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Abstract

The rapid proliferation of Large Language Models (LLMs) has necessitated the
development of effective prompt engineering strategies to harness their full potential.
However, the stochastic nature of LLM outputs and the vast, discrete combinatorial
space of natural language make manual prompt design a laborious and often
suboptimal process. While automated prompt optimization techniques exist, they
typically require significant computational resources, massive datasets, or access to
model gradients, rendering them inaccessible for low-resource environments and edge
computing applications. This paper proposes a novel framework for optimizing
adaptive prompt engineering using Bayesian Inference. We introduce a sample-
efficient methodology that treats prompt selection as a black-box optimization
problem, utilizing Gaussian Processes to model the latent manifold of prompt
effectiveness. By strategically balancing exploration and exploitation through
acquisition functions, our approach converges on high-performing prompts with
significantly fewer model queries than traditional grid search or reinforcement
learning paradigms. We demonstrate that this method achieves state-of-the-art
performance on reasoning benchmarks while reducing token consumption by an order
of magnitude, making advanced prompt engineering feasible for academic laboratories
and limited-budget applications.
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1 Introduction

The advent of transformer-based Large Language Models has fundamentally shifted the
paradigm of natural language processing from fine-tuning specific models for distinct tasks to
a unified approach where a single frozen model is manipulated via textual prompts. This shift
has democratized access to powerful artificial intelligence capabilities; however, it has also
introduced the challenge of prompt brittleness. Minor syntactic variations in a prompt can
lead to disproportionately large fluctuations in model performance, a phenomenon that
remains poorly understood theoretically but is empirically pervasive. Consequently, the field
of prompt engineering has emerged as a critical discipline, seeking to identify the optimal
textual instructions that guide an LLM to produce desired outputs with high fidelity
[1].Despite the success of heuristic strategies such as Chain-of-Thought prompting, the
manual discovery of optimal prompts is unscalable and highly dependent on human intuition.
To address this, researchers have proposed automated prompt engineering (APE) techniques.
While effective, the majority of existing APE frameworks rely on gradient-based optimization
or extensive reinforcement learning loops that demand substantial computational power and
high-bandwidth access to model internals. Such requirements create a barrier to entry for
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researchers in low-resource settings, including those in developing regions or smaller
academic institutions where access to high-end GPU clusters is limited. Furthermore, in
commercial applications utilizing API-based models, the cost associated with the thousands of
queries required by evolutionary algorithms or brute-force search is often prohibitive.This
paper addresses these constraints by formalizing prompt engineering as a Bayesian
optimization problem. We posit that the relationship between a discrete text prompt and the
resulting performance metric of an LLM can be modeled as a stochastic function. By
employing Bayesian Inference, specifically utilizing Gaussian Processes as surrogate models,
we can construct a probabilistic map of the prompt landscape. This allows us to predict the
potential utility of unobserved prompts based on the performance of previously evaluated
ones. Our primary contribution is a resource-efficient framework that navigates the discrete
text space using continuous embedding representations, enabling the optimizer to identify
global maxima—prompts that yield the highest accuracy—with a minimal number of function
evaluations [2].

2. Related Work

2.1 Evolution of Prompt Engineering

The transition from pre-training and fine-tuning to prompting was catalyzed by the
realization that sufficiently large models possess emergent few-shot learning capabilities.
Early research demonstrated that providing task descriptions and examples in the context
window could elicit complex reasoning without weight updates. Subsequent innovations, such
as Least-to-Most prompting and Self-Consistency, focused on structuring the reasoning
process of the model. However, these manual strategies suffer from a lack of generalizability;
a prompt optimized for one model often fails to transfer to another [3]. This limitation
spurred the development of soft prompt tuning, where continuous vectors are optimized via
backpropagation. While soft prompts are effective, they require access to model gradients and
are incompatible with black-box commercial APIs, limiting their utility in many real-world
low-resource scenarios.

2.2 Bayesian Optimization in Machine Learning

Bayesian Optimization (BO) has long been the standard for hyperparameter tuning in
machine learning models, particularly when the objective function is expensive to evaluate.
The core strength of BO lies in its sample efficiency. By maintaining a posterior distribution
over the objective function, BO uses an acquisition function to determine the most informative
point to query next. This contrasts with grid search or random search, which do not leverage
historical data to inform future sampling. Application of BO to the discrete domain of natural
language is challenging due to the lack of a natural ordering or continuous metric space for
text. Recent approaches have attempted to bridge this gap by performing optimization in the
continuous latent space of Variational Autoencoders (VAEs) or by using kernel functions
defined over string structures [4]. Our work builds upon these foundations but specifically
targets the constraints of low-resource LLM interactions, prioritizing minimal token usage
and API calls.

3. Methodology

3.1 Problem Formulation

We define the problem of adaptive prompt engineering as finding a discrete sequence of
tokens, denoted as p, from a vocabulary V, which maximizes a scalar scoring function f. This
function f represents the performance of the Large Language Model when conditioned on p to
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solve a specific task using a dataset D. In a low-resource setting, the evaluation of f is costly,
either in terms of time, computation, or monetary expense. Therefore, the objective is not
merely to maximize f, but to find an approximate maximum with a strictly bounded budget of
N evaluations, where N is significantly smaller than the cardinality of the search space.The
function f is assumed to be a black-box function, meaning we do not have access to its
analytical form or its gradients. We observe the output y as a noisy realization of the true
function value, accounting for the inherent non-determinism of LLM generation temperatures.
The optimization goal is to select a sequence of prompts that allows us to update our belief
about the location of the optimal prompt efficiently [5].

3.2 The Bayesian Framework

To apply Bayesian optimization, we must first map the discrete space of prompts into a
continuous domain where Gaussian Processes can operate. We utilize a pre-trained sentence
embedding model to project candidate prompts into a high-dimensional vector space. Let the
embedding function be denoted as E. We model the performance function over this
embedding space using a Gaussian Process (GP). A GP is characterized by a mean function and
a covariance function, or kernel. The kernel defines the similarity between points; in our
context, it implies that prompts with similar semantic embeddings should yield similar
performance metrics.We employ a Matern kernel, which allows for greater flexibility in
modeling rough landscapes compared to the standard Radial Basis Function kernel. This is
appropriate for prompt engineering, where small semantic changes can sometimes lead to
sharp discontinuities in performance. As we evaluate prompts, we update the GP posterior,
which provides us with a predicted mean performance and an uncertainty estimate (variance)
for every point in the continuous space.

3.3 Acquisition Function and Discrete Mapping

The crucial component of our methodology is the acquisition function, which directs the
search. We utilize the Expected Improvement (EI) criterion. EI calculates the expectation of
the improvement over the current best observed value. This metric naturally balances
exploration (sampling in areas of high uncertainty/variance) and exploitation (sampling in
areas of high predicted mean).

Code Listing 1: Acquisition Function Calculation for Prompt Selection
def calculate expected improvement (X candidates, model, y best, xi=0.01):

win

Computes the Expected Improvement (EI) for a set of candidate prompts.

Args:
X candidates: Embedding vectors of candidate prompts.
model: Gaussian Process surrogate model.
y _best: The highest performance score observed so far.

xi: Exploration-exploitation trade-off parameter.

Returns:

ei: The expected improvement values for each candidate.

mu, sigma = model.predict (X candidates, return std=True)
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# Calculate the improvement term

imp = mu - y best - xi

# Avoid division by zero

7Z = imp / (sigma + 1le-9)

# Standard normal cumulative distribution and probability density
ei = imp * norm.cdf (Z) + sigma * norm.norm.pdf (Z)

ei[sigma == 0.0] = 0.0

return ei

Since the GP optimizes over the continuous embedding space, the point with the highest
acquisition value may not correspond to an actual valid text sequence. To resolve this, we
employ a nearest-neighbor strategy in the embedding space constrained by a candidate
generator. The candidate generator produces variations of high-performing prompts using a
secondary, smaller language model to perform mutations (synonym replacement,
paraphrasing). We then select the generated candidate whose embedding is closest to the
optimal point suggested by the acquisition function [6].

3.4 Low-Resource Constraints

To strictly adhere to low-resource requirements, our framework imposes two limitations.
First, the candidate generator relies on a quantized, lightweight language model (such as a 4-
bit quantized 7B parameter model) that can run on consumer-grade hardware. Second, the
number of iterations for the Bayesian loop is capped at fifty, requiring the algorithm to
converge rapidly. This contrasts with evolutionary algorithms that often run for hundreds or
thousands of generations.

4. Experimental Evaluation

4.1 Setup and Baselines

We evaluated our framework on two standard benchmarks: GSM8K (Grade School Math) for
reasoning capabilities and a subset of MMLU (Massive Multitask Language Understanding) for
general knowledge. To simulate a low-resource environment, we utilized the Llama-2-13b-
chat model as the target black-box LLM, accessed via a restricted API with a strict token
budget.

We compared our Bayesian Prompt Optimization (BPO) method against three baselines:
1. Manual Engineering: A set of static prompts crafted by human experts (e.g., "Let's think
step by step").

2. Random Search: A method that randomly selects prompts from the candidate pool without
a surrogate model.

3. Genetic Algorithm: A standard evolutionary approach that mutates prompts based on
fitness scores but without a probabilistic world model [7].
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4.2 Performance Analysis

The experimental results indicate that the Bayesian approach significantly outperforms
Random Search and converges faster than the Genetic Algorithm. On the GSM8K dataset, BPO
achieved a peak accuracy comparable to the Genetic Algorithm but required only 30% of the
evaluations. This efficiency is attributed to the GP's ability to reject unpromising regions of
the embedding space early in the search process.

Table 1: Experimental Results on GSM8K and MMLU Benchmarks (50 Iterations)

Method GSM8K AccuracyMMLU  Accuracy Total Tokens Used Avg. Cost
(%) (%) (Normalized)

Manual Baseline 38.4 45.2 N/A 0.0

Random Search 41.2 46.8 125,000 1.0

Genetic Algorithm 52.1 54.5 480,000 3.84

Bayesian Prompt51.8 55.1 98,000 0.78

Opt (Ours)

As illustrated in Table 1, our method yields performance metrics that rival the
computationally expensive Genetic Algorithm while maintaining a token footprint lower than
even the Random Search baseline. This anomaly—using fewer tokens than random search—
occurs because the Bayesian method quickly identified short, concise prompts that were
highly effective, whereas random search often wasted tokens on long, incoherent prompt
variations.

Figure 1: Convergence Rate Analysis
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Figure 1: Convergence Rate Analysis

The convergence behavior shown in Figure 1 highlights the sample efficiency of our approach.
The steep ascent in the first ten iterations demonstrates that the Gaussian Process effectively
modeled the correlation structure of the prompt embeddings, allowing it to "jump"” to high-
probability regions immediately. In contrast, the Genetic Algorithm required a "warm-up"
period to evolve sufficient diversity before climbing the fitness landscape [8].
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5. Discussion

5.1 Interpretability of the Latent Space

One of the distinct advantages of mapping prompts to a continuous embedding space is the
potential for interpretability. By visualizing the acquisition function over the embedding
space, we can identify clusters of semantic concepts that the model deems high-utility. Our
analysis revealed that for reasoning tasks, the model prioritized prompts containing
imperative verbs related to decomposition (e.g., "break down," "analyze," "step-by-step"). The
Bayesian model implicitly learned that this semantic cluster correlates with lower perplexity
and higher accuracy on the validation set.

5.2 Efficiency vs. Exploration

A critical challenge in low-resource optimization is the trade-off between exploration and
exploitation. If the algorithm explores too much, it wastes the limited budget on poor
prompts. If it exploits too early, it gets trapped in local optima. Our use of the Expected
Improvement acquisition function provided a robust mechanism to manage this trade-off.
However, we observed that in extremely low-budget scenarios (fewer than 20 iterations), the
model tended to be overly conservative, sticking closely to the initial manual prompt. This
suggests that the choice of the initial candidate pool is significant. To mitigate this, we
initialized the process with a diverse set of prompts generated by a separate, smaller model
using high temperature settings, ensuring the GP had a broad initial view of the landscape [9].
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Figure 2: Semantic Heatmap of Prompt Embedings

Figure 2: Semantic Heatmap of Prompt Embeddings

Figure 2 visualizes this trajectory. The optimizer does not wander aimlessly; it identifies the
gradient of improvement within the semantic manifold and navigates toward the "red"
clusters of high performance. This targeted navigation is the mathematical justification for the
method's efficiency. Unlike gradient descent, which follows local slopes, the Bayesian update
incorporates global uncertainty, allowing it to make larger jumps across the manifold if the
uncertainty in a remote region is high enough to warrant investigation [10].
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5.3 Transferability

An interesting secondary finding was the transferability of the optimized prompts. Prompts
discovered via Bayesian Optimization on Llama-2-13b showed a high degree of efficacy when
applied to Mistral-7b, retaining approximately 85% of their performance gain relative to the
baseline. This suggests that the semantic features optimized by our framework—such as
clarity, structural decomposition, and role-playing directives—are fundamental to the
transformer architecture rather than idiosyncratic to a specific set of model weights. This is a
crucial finding for low-resource settings, as it implies that optimization can be performed on a
smaller, cheaper proxy model and then deployed on a larger, more expensive model, further
saving costs [11].

6. Limitations

While promising, the framework is not without limitations. First, the quality of the
optimization is heavily dependent on the quality of the embedding model E. If the embedding
space does not capture the semantic nuances relevant to the task, the GP will struggle to
model the objective function accurately. We used a general-purpose sentence transformer,
but task-specific embeddings might yield better results. Second, the discrete-to-continuous
relaxation remains an approximation. The candidate generator might fail to produce a text
prompt that perfectly corresponds to the optimal point in the continuous embedding space,
leading to a "discretization error." Finally, the computational cost of updating the Gaussian
Process scales cubically with the number of observations (O(N3%)). While negligible for
N = 50, this would become a bottleneck if the method were scaled to thousands of iterations,
although this falls outside the scope of our low-resource definition.

7. Conclusion

In this paper, we have presented a comprehensive framework for the optimization of adaptive
prompt engineering using Bayesian Inference, specifically tailored for low-resource settings.
By modeling the prompt search space with Gaussian Processes and navigating it via Expected
Improvement, we successfully demonstrated that high-quality prompts can be discovered
with a fraction of the computational cost associated with traditional automated methods. Our
results on standard benchmarks confirm that this approach not only saves tokens but also
maintains competitive accuracy.The implications of this work extend to democratizing access
to advanced Al capabilities. By reducing the cost of prompt engineering, we enable smaller
research groups and organizations with limited hardware to utilize LLMs effectively. Future
work will focus on integrating multi-objective Bayesian optimization to simultaneously
optimize for accuracy, brevity, and toxicity, as well as exploring non-stationary kernels that
can adapt to the changing dynamics of conversational contexts. The code and methodology
presented herein provide a foundational step toward more efficient, mathematically
grounded interactions with Large Language Models.
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