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Abstract 

The rapid evolution of Large Language Models has revolutionized natural language 
processing, yet these models frequently exhibit limitations when deployed in 
specialized high-stakes domains such as medicine, law, and engineering. A primary 
deficiency is the propensity for hallucination and the inability to access up-to-date, 
structured factual knowledge that was not present or emphasized during the pre-
training phase. This paper proposes a novel architecture that integrates Domain-
Specific Knowledge Graphs with pre-trained language models utilizing Graph Attention 
Networks. By employing a dual-stream mechanism that processes textual input 
alongside structured graph data, we facilitate a deep injection of semantic 
relationships into the latent space of the language model. The Graph Attention Network 
component dynamically weighs the importance of neighboring entities within the 
knowledge graph, allowing the model to attend to the most relevant factual context 
corresponding to the input query. We evaluate this approach on two distinct domain-
specific datasets involving biomedical and legal texts. Our experimental results 
demonstrate that this injection mechanism significantly outperforms standard fine-
tuning approaches in terms of factual accuracy and reasoning capabilities. The 
proposed method offers a scalable pathway toward creating more reliable and logically 
sound domain-specific artificial intelligence systems. 
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1 Introduction 

The advent of transformer-based architectures has ushered in a new era of capability in 
artificial intelligence, particularly in the generation and understanding of human language. 
Models trained on vast corpora of general internet text have demonstrated remarkable 
proficiency in varied tasks, ranging from translation to creative writing. However, the 
stochastic nature of these models presents substantial challenges when they are applied to 
vertical domains requiring high precision and strict adherence to factual reality. In fields such 
as healthcare, finance, and jurisprudence, the cost of errors is prohibitively high. The 
phenomenon known as hallucination, where a model generates plausible-sounding but 
factually incorrect information, remains a critical bottleneck for the deployment of generative 
artificial intelligence in professional settings. This issue stems largely from the fact that 
language models store knowledge implicitly within their parameters, making it difficult to 
verify, update, or reason over explicit relationships between entities [1].To mitigate these 
limitations, researchers have increasingly turned to neuro-symbolic approaches that combine 
the statistical power of neural networks with the structured reliability of symbolic knowledge 
bases. Knowledge Graphs serve as an ideal repository for such structured information, 
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representing entities as nodes and their relationships as edges. While Knowledge Graphs 
provide a rich source of factual grounding, effectively integrating this discrete structure into 
the continuous vector space of a neural language model is a non-trivial engineering and 
theoretical challenge. Early attempts often relied on simple concatenation of retrieved facts to 
the input text, a method that is computationally inefficient and often fails to capture the 
complex, multi-hop reasoning required for sophisticated queries [2].This paper introduces a 
robust framework for Enhancing Domain-Specific Language Models with Knowledge Graph 
Injection and Graph Attention Networks. Unlike static embedding approaches, our method 
utilizes Graph Attention Networks to process the local neighborhood of entities identified in 
the input text. By leveraging the attention mechanism inherent in these networks, our model 
learns to assign varying levels of importance to different nodes in the graph, thereby filtering 
out irrelevant noise and focusing on the semantic relationships that are most pertinent to the 
current context. This graph-encoded context is then fused with the textual representations of 
the language model through a specialized cross-attention injection layer [3].The contributions 
of this study are manifold. First, we provide a formalized architecture for the seamless 
integration of graph-based features into transformer decoders. Second, we demonstrate that 
the use of attention mechanisms over graph structures allows for better handling of 
knowledge heterogeneity and sparsity compared to traditional graph convolutional networks. 
Third, we present empirical evidence that our approach not only improves accuracy but also 
enhances the interpretability of the model's decision-making process by highlighting the 
specific graph entities that influenced the output. This research bridges the gap between 
unstructured textual learning and structured knowledge representation, paving the way for 
more trustworthy domain-expert systems. 

2. Related Work 

The trajectory of natural language processing has shifted dramatically from rule-based 
systems to statistical models and, more recently, to deep learning architectures. The 
introduction of the Transformer architecture marked a pivotal moment, enabling the parallel 
processing of sequences and the capture of long-range dependencies. Despite their success, 
purely data-driven models often struggle with tasks requiring external knowledge that is not 
frequently represented in the training corpus. This section reviews the historical progression 
of language modeling, the development of knowledge representation, and the intersection of 
graph neural networks with textual processing. 

2.1 Language Models and Domain Adaptation 

Pre-trained language models, such as BERT and its successors, have achieved state-of-the-art 
results on the General Language Understanding Evaluation benchmarks. These models learn 
contextual representations of words by predicting masked tokens or the next token in a 
sequence. While highly effective for general tasks, their performance degrades in specialized 
domains where the vocabulary and semantic structures differ significantly from the general 
web text used for pre-training. Conventional domain adaptation involves fine-tuning the 
model on a smaller, domain-specific corpus. While this adjusts the linguistic style of the 
model, it does not necessarily imbue it with the structured logical constraints governing that 
domain [4]. Furthermore, fine-tuning on small datasets can lead to catastrophic forgetting, 
where the model loses its general reasoning capabilities. Recent studies have highlighted that 
simple fine-tuning is insufficient for ensuring factual consistency, necessitating external 
augmentation strategies [5]. 
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2.2 Knowledge Graph Integration Strategies 

Knowledge Graphs offer a structured representation of facts, typically stored as triples 
consisting of a subject, predicate, and object. Integrating these triples into neural networks 
has been a subject of extensive research. Early methods utilized knowledge graph 
embeddings, such as TransE or DistMult, to convert entities and relations into vector 
representations. These pre-computed embeddings were then concatenated with word 
embeddings in the input layer of the language model. However, this approach treats 
knowledge integration as a static process, ignoring the context-dependent nature of 
information relevance [6]. More advanced techniques have explored the use of retrieval-
augmented generation, where relevant documents or graph sub-graphs are retrieved and 
prepended to the prompt. While effective, retrieval-augmented generation often suffers from 
context window limitations and the retrieval of irrelevant information that distracts the 
model. The challenge remains to integrate knowledge in a way that is both deep, affecting the 
internal reasoning of the model, and dynamic, adjusting to the specific query at hand [7]. 
Approaches that attempt to linearize graphs into text sequences for model consumption often 
lose the structural topology that makes graphs unique, leading to sub-optimal reasoning 
performance [8]. 

2.3 Graph Neural Networks in NLP 

Graph Neural Networks have emerged as a powerful tool for processing non-Euclidean data 
structures. In the context of natural language processing, Graph Neural Networks have been 
used to model syntactic dependency trees, semantic role labeling, and co-reference resolution. 
Graph Convolutional Networks operate by aggregating information from a node's immediate 
neighbors to update its representation. However, Graph Convolutional Networks typically 
assign equal or statically defined weights to all neighbors, which can be problematic in 
knowledge graphs where a single node may have hundreds of connections, only a few of 
which are relevant to a specific context [9].To address this, Graph Attention Networks were 
introduced, incorporating an attention mechanism that learns to weigh the contribution of 
each neighbor dynamically. This allows the model to focus on the most informative parts of 
the graph. In the domain of question answering, Graph Attention Networks have been used to 
reason over knowledge bases to derive answers that are not explicitly stated in the text. 
Despite these advancements, the integration of Graph Attention Network outputs into the 
deep layers of Generative Pre-trained Transformers remains an under-explored area. Most 
existing hybrid models use shallow fusion techniques at the input or output level. Our work 
distinguishes itself by employing a deep injection mechanism where graph-aware 
representations modulate the self-attention matrices of the language model layers [10]. 

3. Methodology 

Our proposed framework is designed to synergize the generative fluency of Large Language 
Models with the factual rigidity of Domain-Specific Knowledge Graphs. The architecture 
consists of three primary components: the Knowledge Graph Construction and Retrieval 
module, the Graph Attention Network encoder, and the Multi-Modal Injection Layer. This 
section details the theoretical underpinnings and operational mechanics of each component. 



Frontiers in Artificial Intelligence Research Volume 3 Issue 1, 2026 

ISSN: 3079-6342  

 

21 

 
Figure 1: Architectural Diagram 

3.1 Knowledge Graph Construction and Retrieval 

The foundation of our approach is a high-quality domain-specific Knowledge Graph. For the 
purpose of this study, we utilize existing ontologies relevant to the target domains, specifically 
the Unified Medical Language System for the biomedical domain and a custom-built legal 
ontology for the legal domain. The graph is formally defined as a set of vertices and edges, 
where vertices represent entities and edges represent semantic relations.Given an input text 
sequence, we first employ an entity linker to identify mentions of graph entities within the 
text. This process involves Named Entity Recognition followed by disambiguation to map text 
spans to unique unique identifiers in the Knowledge Graph. Once the entities are identified, 
we extract a subgraph centered around these entities. To capture sufficient context without 
introducing excessive noise, we include all nodes within a 2-hop neighborhood of the 
identified entities. This subgraph serves as the input to the graph processing module. The 
limitation to 2-hops is a design choice balancing computational efficiency with the need for 
multi-step reasoning capabilities [11]. 

3.2 Graph Attention Network Encoder 

The extracted subgraph is processed using a Graph Attention Network. Unlike standard Graph 
Convolutional Networks, the Graph Attention Network computes the hidden states of each 
node by attending to its neighbors. The core idea is to compute an attention coefficient that 
indicates the importance of a neighbor node to a central node. This is achieved through a 
shared linear transformation applied to every node, followed by a self-attention 
mechanism.The attention mechanism creates a weighted sum of neighbor features. If a node 
has a high degree of connectivity, the attention mechanism effectively filters out irrelevant 
connections based on the current feature states. We employ a multi-head attention structure 
within the graph network to stabilize the learning process. Each head computes independent 
attention coefficients, and their outputs are concatenated to form the final node 
representation. This allows the model to capture different types of relationships 
simultaneously—for example, one head might focus on causal relationships while another 
focuses on hierarchical classifications. The output of this stage is a set of context-enriched 
node embeddings that encapsulate both the intrinsic properties of the entities and their local 
structural context [12]. 
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3.3 Deep Knowledge Injection Mechanism 

The integration of the graph embeddings into the language model is achieved through a novel 
injection layer inserted between the transformer blocks of the language model. Standard 
language models utilize self-attention where tokens attend to other tokens in the sequence. 
We introduce a cross-attention layer where the query vectors are derived from the text 
embeddings, and the key and value vectors are derived from the graph node embeddings 
produced by the Graph Attention Network.This configuration allows the text tokens to query 
the knowledge graph for relevant information. For instance, if the text mentions a specific 
drug, the attention mechanism will likely assign high weights to the graph nodes representing 
that drug's side effects or contraindications, provided they exist in the extracted subgraph. 
This retrieved graph information is then added to the text representation via a residual 
connection and layer normalization. By interleaving these injection layers at multiple depths 
of the language model, we ensure that the generated text is consistently guided by the 
structured knowledge throughout the generation process. This deep fusion strategy is 
superior to input-level concatenation because it allows the model to refine its understanding 
of the graph context as the abstraction level of the text representation increases through the 
layers [13]. 

4. Experimental Setup 

To validate the efficacy of our proposed architecture, we conducted rigorous experiments 
comparing our model against several strong baselines. The experiments were designed to 
assess both the factual accuracy of the generated text and the model's ability to utilize the 
injected knowledge for reasoning tasks. 

4.1 Datasets and Baselines 

We utilized two primary datasets representing distinct domains. The first is MedQA, a large-
scale biomedical question-answering dataset derived from professional medical board exams. 
The corresponding knowledge graph was a subset of the Unified Medical Language System 
containing approximately one million entities. The second dataset is LegalBench, a collection 
of legal reasoning tasks including statute interpretation and case outcome prediction. The 
legal knowledge graph was constructed from statutes and case law citations. 

We compared our Knowledge Graph-Graph Attention Network model against three 
baselines: 

1.  Vanilla LLaMA-7B: A general-purpose large language model without domain-specific fine-
tuning. 

2.  Fine-tuned LLaMA: The same model fine-tuned on the training sets of the respective 
domains but without access to external knowledge graphs. 

3.  RAG-LLaMA: A retrieval-augmented generation approach where textual descriptions of 
relevant knowledge graph triples are retrieved and prepended to the input context, without 
using graph neural networks. 

4.2 Implementation Details 

The Graph Attention Network was implemented using the PyTorch Geometric library. We 
utilized a two-layer architecture with an embedding dimension of 1024 to match the hidden 
size of the language model. The attention mechanism employed 8 heads. The language model 
component was initialized with weights from LLaMA-2-7B. Training was performed using the 
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AdamW optimizer with a learning rate of 2e-5 for the language model parameters and 1e-4 
for the Graph Attention Network parameters. A warm-up period of 1000 steps was used, 
followed by a linear decay of the learning rate.The training objective was the standard cross-
entropy loss for next-token prediction. We trained the models on 4 NVIDIA A100 GPUs for 3 
epochs. To ensure fair comparison, all baselines were trained with identical hyperparameters 
where applicable. The entity linking was performed using a BERT-based named entity 
recognition model trained on domain-specific data prior to the main experiment. 

Code Listing 1: Graph Attention Layer Implementation 
import torch 

import torch.nn as nn 

import torch.nn.functional as F 

 

class GraphAttentionLayer(nn.Module): 

    def __init__(self, in_features, out_features, dropout, alpha, concat=True): 

        super(GraphAttentionLayer, self).__init__() 

        self.dropout = dropout 

        self.in_features = in_features 

        self.out_features = out_features 

        self.alpha = alpha 

        self.concat = concat 

 

        self.W = nn.Parameter(torch.empty(size=(in_features, out_features))) 

        nn.init.xavier_uniform_(self.W.data, gain=1.414) 

        self.a = nn.Parameter(torch.empty(size=(2*out_features, 1))) 

        nn.init.xavier_uniform_(self.a.data, gain=1.414) 

 

        self.leakyrelu = nn.LeakyReLU(self.alpha) 

 

    def forward(self, h, adj): 

        Wh = torch.mm(h, self.W) 

        a_input = self._prepare_attentional_mechanism_input(Wh) 

        e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) 

 

        zero_vec = -9e15*torch.ones_like(e) 

        attention = torch.where(adj > 0, e, zero_vec) 

        attention = F.softmax(attention, dim=1) 

        attention = F.dropout(attention, self.dropout, training=self.training) 

        h_prime = torch.matmul(attention, Wh) 

 

        if self.concat: 

            return F.elu(h_prime) 

        else: 

            return h_prime 
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    def _prepare_attentional_mechanism_input(self, Wh): 

        N = Wh.size()[0] 

        Wh_repeated_in_chunks = Wh.repeat_interleave(N, dim=0) 

        Wh_repeated_alternating = Wh.repeat(N, 1) 

        all_combinations_matrix = torch.cat([Wh_repeated_in_chunks, 

Wh_repeated_alternating], dim=1) 

        return all_combinations_matrix.view(N, N, 2 * self.out_features) 

5. Results and Analysis 

The performance of the models was evaluated using standard metrics including Accuracy, F1 
Score, and Exact Match for the question-answering tasks. Additionally, we employed human 
evaluation for a subset of generated responses to assess coherence and factual correctness. 

5.1 Quantitative Performance 

The quantitative results indicate a distinct advantage for the proposed architecture. Table 1 
summarizes the performance across both the MedQA and LegalBench datasets. The Vanilla 
LLaMA model struggled significantly with domain-specific terminology and reasoning, often 
defaulting to generalized but incorrect answers. Fine-tuning provided a substantial boost, 
particularly in learning the stylistic nuances of the domains, but still suffered from 
hallucinations on complex queries involving rare entities. 

Table 1: Experimental Results Comparison 

Model MedQA Accuracy 
(%) 

MedQA F1 Score LegalBench 
Accuracy (%) 

LegalBench F1 
Score 

Vanilla LLaMA-7B 34.2 31.5 41.8 38.2 

Fine-tuned LLaMA 48.6 46.1 55.3 52.7 

RAG-LLaMA 54.1 51.8 61.2 59.4 

KG-GAT (Ours) 62.8 60.4 68.7 66.1 

The Retrieval-Augmented Generation baseline showed improvement over simple fine-tuning, 
validating the hypothesis that external knowledge is crucial. However, our Knowledge Graph-
Graph Attention Network (KG-GAT) model outperformed the RAG baseline by a significant 
margin—approximately 8.7% in accuracy on MedQA and 7.5% on LegalBench. This suggests 
that the structured integration of knowledge via Graph Attention Networks is more effective 
than unstructured text retrieval. The attention mechanism allows the model to synthesize 
information from multiple connected nodes, effectively performing multi-hop reasoning that 
is difficult to achieve with simple text retrieval [14]. Furthermore, the improvement in F1 
scores indicates that our model captures the precise terminology required in these domains 
more accurately [15]. 

5.2 Ablation Studies 

To understand the contribution of individual components, we conducted ablation studies by 
removing specific parts of the architecture. We tested a variant where the Graph Attention 
Network was replaced with a static Graph Convolutional Network (GCN), and a variant where 
the graph injection was performed only at the input layer rather than deep within the 
network. 
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Table 2: Ablation Study Results 

Configuration MedQA Accuracy 
(%) 

Delta LegalBench 
Accuracy (%) 

Delta 

KG-GAT (Full 
Model) 

62.8 - 68.7 - 

w/o Attention 
(GCN) 

58.3 -4.5 64.1 -4.6 

w/o Deep 
Injection 

56.9 -5.9 63.5 -5.2 

w/o Graph 
Structure 

54.1 -8.7 61.2 -7.5 

The results in Table 2 demonstrate the critical role of the attention mechanism. Replacing the 
Graph Attention Network with a Graph Convolutional Network resulted in a performance 
drop, confirming that treating all neighbors equally introduces noise that hampers model 
performance. The drop was even more pronounced when deep injection was removed, 
highlighting the importance of fusing knowledge at higher levels of abstraction. The "w/o 
Graph Structure" variant essentially replicates the RAG baseline, confirming that the 
topological information contained in the graph edges provides valuable signal beyond the 
content of the nodes themselves [16]. 

6. Discussion 

The experimental findings underscore the transformative potential of integrating structured 
knowledge graphs into deep learning pipelines via attention mechanisms. The superior 
performance of the KG-GAT model suggests that the "black box" nature of large language 
models can be effectively illuminated by the structured logic of symbolic AI. 

6.1 Implications for Domain Specialization 

One of the most significant implications of this research is the reduction in data requirements 
for domain adaptation. Traditional fine-tuning requires massive corpora of domain-specific 
text to implicitly teach the model facts. Our approach decouples the reasoning engine (the 
Language Model) from the knowledge base (the Knowledge Graph). This means that a model 
can be updated with new facts simply by updating the Knowledge Graph, without the need for 
expensive retraining. This is particularly valuable in fields like medicine or law, where 
knowledge is constantly evolving. 

 
Figure 2: Efficiency Chart 
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Figure 2 illustrates this efficiency. Even with a fraction of the training data, the KG-GAT model 
achieves performance comparable to a fully fine-tuned model, provided the underlying 
Knowledge Graph is comprehensive. This suggests a paradigm shift where the focus of 
domain adaptation moves from collecting unstructured text to curating high-quality 
structured data. 

6.2 Limitations and Challenges 

Despite the promising results, several limitations persist. First, the performance of the system 
is heavily dependent on the quality and completeness of the underlying Knowledge Graph. If 
the graph contains errors or lacks coverage, the model's performance will suffer, a 
phenomenon known as error propagation. Second, the computational overhead of processing 
graphs with Graph Attention Networks is non-negligible. While more efficient than processing 
equivalent amounts of text, the graph retrieval and attention mechanisms add latency to the 
inference process [17].Furthermore, the entity linking step acts as a bottleneck. If entities in 
the input text are not correctly identified or linked to the graph, the subsequent injection 
mechanism fails to provide relevant context. Future work must address robustness against 
noisy entity linking and explore end-to-end differentiable linking strategies. 

6.3 Future Directions 

Future research should explore the integration of dynamic Knowledge Graphs that can evolve 
during the conversation. Additionally, extending this architecture to multi-modal graphs that 
include images or numerical data could further enhance its applicability in domains like 
radiology or finance. Investigating the interpretability of the attention weights in the Graph 
Attention Network could also provide valuable insights into the reasoning process of the 
model, offering a form of "explainable AI" that is highly sought after in regulated industries 
[18]. 

Conclusion 

In this paper, we presented a comprehensive framework for enhancing domain-specific Large 
Language Models using Knowledge Graph Injection and Graph Attention Networks. By 
explicitly modeling the relationships between entities and dynamically attending to relevant 
structural context, our approach significantly reduces hallucination and improves factual 
accuracy in specialized domains. The empirical results on biomedical and legal datasets 
confirm that the synergy between symbolic knowledge representation and neural 
probabilistic modeling is a powerful direction for the future of artificial intelligence. As the 
field moves toward more robust and reliable systems, architectures that respect and utilize 
structured knowledge will likely become the standard for high-stakes applications. The 
proposed KG-GAT framework represents a significant step toward bridging the gap between 
the statistical fluency of language models and the rigorous precision required by expert 
domains. 
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