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Abstract

The rapid evolution of Large Language Models has revolutionized natural language
processing, yet these models frequently exhibit limitations when deployed in
specialized high-stakes domains such as medicine, law, and engineering. A primary
deficiency is the propensity for hallucination and the inability to access up-to-date,
structured factual knowledge that was not present or emphasized during the pre-
training phase. This paper proposes a novel architecture that integrates Domain-
Specific Knowledge Graphs with pre-trained language models utilizing Graph Attention
Networks. By employing a dual-stream mechanism that processes textual input
alongside structured graph data, we facilitate a deep injection of semantic
relationships into the latent space of the language model. The Graph Attention Network
component dynamically weighs the importance of neighboring entities within the
knowledge graph, allowing the model to attend to the most relevant factual context
corresponding to the input query. We evaluate this approach on two distinct domain-
specific datasets involving biomedical and legal texts. Our experimental results
demonstrate that this injection mechanism significantly outperforms standard fine-
tuning approaches in terms of factual accuracy and reasoning capabilities. The
proposed method offers a scalable pathway toward creating more reliable and logically
sound domain-specific artificial intelligence systems.
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1 Introduction

The advent of transformer-based architectures has ushered in a new era of capability in
artificial intelligence, particularly in the generation and understanding of human language.
Models trained on vast corpora of general internet text have demonstrated remarkable
proficiency in varied tasks, ranging from translation to creative writing. However, the
stochastic nature of these models presents substantial challenges when they are applied to
vertical domains requiring high precision and strict adherence to factual reality. In fields such
as healthcare, finance, and jurisprudence, the cost of errors is prohibitively high. The
phenomenon known as hallucination, where a model generates plausible-sounding but
factually incorrect information, remains a critical bottleneck for the deployment of generative
artificial intelligence in professional settings. This issue stems largely from the fact that
language models store knowledge implicitly within their parameters, making it difficult to
verify, update, or reason over explicit relationships between entities [1].To mitigate these
limitations, researchers have increasingly turned to neuro-symbolic approaches that combine
the statistical power of neural networks with the structured reliability of symbolic knowledge
bases. Knowledge Graphs serve as an ideal repository for such structured information,
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representing entities as nodes and their relationships as edges. While Knowledge Graphs
provide a rich source of factual grounding, effectively integrating this discrete structure into
the continuous vector space of a neural language model is a non-trivial engineering and
theoretical challenge. Early attempts often relied on simple concatenation of retrieved facts to
the input text, a method that is computationally inefficient and often fails to capture the
complex, multi-hop reasoning required for sophisticated queries [2].This paper introduces a
robust framework for Enhancing Domain-Specific Language Models with Knowledge Graph
Injection and Graph Attention Networks. Unlike static embedding approaches, our method
utilizes Graph Attention Networks to process the local neighborhood of entities identified in
the input text. By leveraging the attention mechanism inherent in these networks, our model
learns to assign varying levels of importance to different nodes in the graph, thereby filtering
out irrelevant noise and focusing on the semantic relationships that are most pertinent to the
current context. This graph-encoded context is then fused with the textual representations of
the language model through a specialized cross-attention injection layer [3].The contributions
of this study are manifold. First, we provide a formalized architecture for the seamless
integration of graph-based features into transformer decoders. Second, we demonstrate that
the use of attention mechanisms over graph structures allows for better handling of
knowledge heterogeneity and sparsity compared to traditional graph convolutional networks.
Third, we present empirical evidence that our approach not only improves accuracy but also
enhances the interpretability of the model's decision-making process by highlighting the
specific graph entities that influenced the output. This research bridges the gap between
unstructured textual learning and structured knowledge representation, paving the way for
more trustworthy domain-expert systems.

2. Related Work

The trajectory of natural language processing has shifted dramatically from rule-based
systems to statistical models and, more recently, to deep learning architectures. The
introduction of the Transformer architecture marked a pivotal moment, enabling the parallel
processing of sequences and the capture of long-range dependencies. Despite their success,
purely data-driven models often struggle with tasks requiring external knowledge that is not
frequently represented in the training corpus. This section reviews the historical progression
of language modeling, the development of knowledge representation, and the intersection of
graph neural networks with textual processing.

2.1 Language Models and Domain Adaptation

Pre-trained language models, such as BERT and its successors, have achieved state-of-the-art
results on the General Language Understanding Evaluation benchmarks. These models learn
contextual representations of words by predicting masked tokens or the next token in a
sequence. While highly effective for general tasks, their performance degrades in specialized
domains where the vocabulary and semantic structures differ significantly from the general
web text used for pre-training. Conventional domain adaptation involves fine-tuning the
model on a smaller, domain-specific corpus. While this adjusts the linguistic style of the
model, it does not necessarily imbue it with the structured logical constraints governing that
domain [4]. Furthermore, fine-tuning on small datasets can lead to catastrophic forgetting,
where the model loses its general reasoning capabilities. Recent studies have highlighted that
simple fine-tuning is insufficient for ensuring factual consistency, necessitating external
augmentation strategies [5].
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2.2 Knowledge Graph Integration Strategies

Knowledge Graphs offer a structured representation of facts, typically stored as triples
consisting of a subject, predicate, and object. Integrating these triples into neural networks
has been a subject of extensive research. Early methods utilized knowledge graph
embeddings, such as TransE or DistMult, to convert entities and relations into vector
representations. These pre-computed embeddings were then concatenated with word
embeddings in the input layer of the language model. However, this approach treats
knowledge integration as a static process, ignoring the context-dependent nature of
information relevance [6]. More advanced techniques have explored the use of retrieval-
augmented generation, where relevant documents or graph sub-graphs are retrieved and
prepended to the prompt. While effective, retrieval-augmented generation often suffers from
context window limitations and the retrieval of irrelevant information that distracts the
model. The challenge remains to integrate knowledge in a way that is both deep, affecting the
internal reasoning of the model, and dynamic, adjusting to the specific query at hand [7].
Approaches that attempt to linearize graphs into text sequences for model consumption often
lose the structural topology that makes graphs unique, leading to sub-optimal reasoning
performance [8].

2.3 Graph Neural Networks in NLP

Graph Neural Networks have emerged as a powerful tool for processing non-Euclidean data
structures. In the context of natural language processing, Graph Neural Networks have been
used to model syntactic dependency trees, semantic role labeling, and co-reference resolution.
Graph Convolutional Networks operate by aggregating information from a node's immediate
neighbors to update its representation. However, Graph Convolutional Networks typically
assign equal or statically defined weights to all neighbors, which can be problematic in
knowledge graphs where a single node may have hundreds of connections, only a few of
which are relevant to a specific context [9].To address this, Graph Attention Networks were
introduced, incorporating an attention mechanism that learns to weigh the contribution of
each neighbor dynamically. This allows the model to focus on the most informative parts of
the graph. In the domain of question answering, Graph Attention Networks have been used to
reason over knowledge bases to derive answers that are not explicitly stated in the text.
Despite these advancements, the integration of Graph Attention Network outputs into the
deep layers of Generative Pre-trained Transformers remains an under-explored area. Most
existing hybrid models use shallow fusion techniques at the input or output level. Our work
distinguishes itself by employing a deep injection mechanism where graph-aware
representations modulate the self-attention matrices of the language model layers [10].

3. Methodology

Our proposed framework is designed to synergize the generative fluency of Large Language
Models with the factual rigidity of Domain-Specific Knowledge Graphs. The architecture
consists of three primary components: the Knowledge Graph Construction and Retrieval
module, the Graph Attention Network encoder, and the Multi-Modal Injection Layer. This
section details the theoretical underpinnings and operational mechanics of each component.
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3.1 Knowledge Graph Construction and Retrieval

The foundation of our approach is a high-quality domain-specific Knowledge Graph. For the
purpose of this study, we utilize existing ontologies relevant to the target domains, specifically
the Unified Medical Language System for the biomedical domain and a custom-built legal
ontology for the legal domain. The graph is formally defined as a set of vertices and edges,
where vertices represent entities and edges represent semantic relations.Given an input text
sequence, we first employ an entity linker to identify mentions of graph entities within the
text. This process involves Named Entity Recognition followed by disambiguation to map text
spans to unique unique identifiers in the Knowledge Graph. Once the entities are identified,
we extract a subgraph centered around these entities. To capture sufficient context without
introducing excessive noise, we include all nodes within a 2-hop neighborhood of the
identified entities. This subgraph serves as the input to the graph processing module. The
limitation to 2-hops is a design choice balancing computational efficiency with the need for
multi-step reasoning capabilities [11].

3.2 Graph Attention Network Encoder

The extracted subgraph is processed using a Graph Attention Network. Unlike standard Graph
Convolutional Networks, the Graph Attention Network computes the hidden states of each
node by attending to its neighbors. The core idea is to compute an attention coefficient that
indicates the importance of a neighbor node to a central node. This is achieved through a
shared linear transformation applied to every node, followed by a self-attention
mechanism.The attention mechanism creates a weighted sum of neighbor features. If a node
has a high degree of connectivity, the attention mechanism effectively filters out irrelevant
connections based on the current feature states. We employ a multi-head attention structure
within the graph network to stabilize the learning process. Each head computes independent
attention coefficients, and their outputs are concatenated to form the final node
representation. This allows the model to capture different types of relationships
simultaneously—for example, one head might focus on causal relationships while another
focuses on hierarchical classifications. The output of this stage is a set of context-enriched
node embeddings that encapsulate both the intrinsic properties of the entities and their local
structural context [12].
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3.3 Deep Knowledge Injection Mechanism

The integration of the graph embeddings into the language model is achieved through a novel
injection layer inserted between the transformer blocks of the language model. Standard
language models utilize self-attention where tokens attend to other tokens in the sequence.
We introduce a cross-attention layer where the query vectors are derived from the text
embeddings, and the key and value vectors are derived from the graph node embeddings
produced by the Graph Attention Network.This configuration allows the text tokens to query
the knowledge graph for relevant information. For instance, if the text mentions a specific
drug, the attention mechanism will likely assign high weights to the graph nodes representing
that drug's side effects or contraindications, provided they exist in the extracted subgraph.
This retrieved graph information is then added to the text representation via a residual
connection and layer normalization. By interleaving these injection layers at multiple depths
of the language model, we ensure that the generated text is consistently guided by the
structured knowledge throughout the generation process. This deep fusion strategy is
superior to input-level concatenation because it allows the model to refine its understanding
of the graph context as the abstraction level of the text representation increases through the
layers [13].

4. Experimental Setup

To validate the efficacy of our proposed architecture, we conducted rigorous experiments
comparing our model against several strong baselines. The experiments were designed to
assess both the factual accuracy of the generated text and the model's ability to utilize the
injected knowledge for reasoning tasks.

4.1 Datasets and Baselines

We utilized two primary datasets representing distinct domains. The first is MedQA, a large-
scale biomedical question-answering dataset derived from professional medical board exams.
The corresponding knowledge graph was a subset of the Unified Medical Language System
containing approximately one million entities. The second dataset is LegalBench, a collection
of legal reasoning tasks including statute interpretation and case outcome prediction. The
legal knowledge graph was constructed from statutes and case law citations.

We compared our Knowledge Graph-Graph Attention Network model against three
baselines:

1. Vanilla LLaMA-7B: A general-purpose large language model without domain-specific fine-
tuning.

2. Fine-tuned LLaMA: The same model fine-tuned on the training sets of the respective
domains but without access to external knowledge graphs.

3. RAG-LLaMA: A retrieval-augmented generation approach where textual descriptions of
relevant knowledge graph triples are retrieved and prepended to the input context, without
using graph neural networks.

4.2 Implementation Details

The Graph Attention Network was implemented using the PyTorch Geometric library. We
utilized a two-layer architecture with an embedding dimension of 1024 to match the hidden
size of the language model. The attention mechanism employed 8 heads. The language model
component was initialized with weights from LLaMA-2-7B. Training was performed using the
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AdamW optimizer with a learning rate of 2e-5 for the language model parameters and le-4
for the Graph Attention Network parameters. A warm-up period of 1000 steps was used,
followed by a linear decay of the learning rate.The training objective was the standard cross-
entropy loss for next-token prediction. We trained the models on 4 NVIDIA A100 GPUs for 3
epochs. To ensure fair comparison, all baselines were trained with identical hyperparameters
where applicable. The entity linking was performed using a BERT-based named entity
recognition model trained on domain-specific data prior to the main experiment.

Code Listing 1: Graph Attention Layer Implementation

import torch
import torch.nn as nn

import torch.nn.functional as F

class GraphAttentionLayer (nn.Module) :

def init (self, in features,
super (GraphAttentionlLayer,
self.dropout = dropout
self.in features = in features
self.out features = out features
self.alpha = alpha

self.concat = concat
self.W =
nn.init.xavier uniform (self.W.data,
self.a =

nn.init.xavier uniform (self.a.data,

self.leakyrelu =

def forward(self, h, adj):
Wh = torch.mm(h, self.W)
a_input =

e =

zero _vec = -9elb5*torch.ones like (e)

out features,

self.leakyrelu(torch.matmul (a_input,

self). init ()

nn.Parameter (torch.empty (size=(in_ features,

dropout,

alpha, concat=True):

out features)))

gain=1.414)

nn.Parameter (torch.empty (size=(2*out features,

IDDD)

gain=1.414)

nn.LeakyReLU (self.alpha)

zZzero_vec)

dim=1)
self.dropout,

attention = torch.where(adj > 0, e,
attention = F.softmax(attention,
attention = F.dropout (attention,

h prime = torch.matmul (attention, Wh)

if self.concat:
return F.elu(h prime)
else:

return h prime
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def prepare attentional mechanism input (self, Wh):
N = Wh.size() [0]
Wh repeated in chunks = Wh.repeat interleave (N, dim=0)
Wh repeated alternating = Wh.repeat (N, 1)

all combinations matrix = torch.cat ([Wh_repeated in chunks,
Wh repeated alternating], dim=1)

return all combinations matrix.view(N, N, 2 * self.out features)

5. Results and Analysis

The performance of the models was evaluated using standard metrics including Accuracy, F1
Score, and Exact Match for the question-answering tasks. Additionally, we employed human
evaluation for a subset of generated responses to assess coherence and factual correctness.

5.1 Quantitative Performance

The quantitative results indicate a distinct advantage for the proposed architecture. Table 1
summarizes the performance across both the MedQA and LegalBench datasets. The Vanilla
LLaMA model struggled significantly with domain-specific terminology and reasoning, often
defaulting to generalized but incorrect answers. Fine-tuning provided a substantial boost,
particularly in learning the stylistic nuances of the domains, but still suffered from
hallucinations on complex queries involving rare entities.

Table 1: Experimental Results Comparison

Model MedQA AccuracyMedQA F1 Score LegalBench LegalBench F1
(%) Accuracy (%) Score

Vanilla LLaMA-7B 34.2 315 41.8 38.2

Fine-tuned LLaMA 48.6 46.1 55.3 52.7

RAG-LLaMA 54.1 51.8 61.2 59.4

KG-GAT (Ours)  62.8 60.4 68.7 66.1

The Retrieval-Augmented Generation baseline showed improvement over simple fine-tuning,
validating the hypothesis that external knowledge is crucial. However, our Knowledge Graph-
Graph Attention Network (KG-GAT) model outperformed the RAG baseline by a significant
margin—approximately 8.7% in accuracy on MedQA and 7.5% on LegalBench. This suggests
that the structured integration of knowledge via Graph Attention Networks is more effective
than unstructured text retrieval. The attention mechanism allows the model to synthesize
information from multiple connected nodes, effectively performing multi-hop reasoning that
is difficult to achieve with simple text retrieval [14]. Furthermore, the improvement in F1
scores indicates that our model captures the precise terminology required in these domains
more accurately [15].

5.2 Ablation Studies

To understand the contribution of individual components, we conducted ablation studies by
removing specific parts of the architecture. We tested a variant where the Graph Attention
Network was replaced with a static Graph Convolutional Network (GCN), and a variant where
the graph injection was performed only at the input layer rather than deep within the
network.
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Table 2: Ablation Study Results

Configuration MedQA AccuracyDelta LegalBench Delta
(%) Accuracy (%)

KG-GAT (Full62.8 - 68.7 -

Model)

w/o Attention 58.3 -4.5 64.1 -4.6

(GCN)

w/o Deep56.9 -5.9 63.5 -5.2

Injection

w/o Graph54.1 -8.7 61.2 -7.5

Structure

The results in Table 2 demonstrate the critical role of the attention mechanism. Replacing the
Graph Attention Network with a Graph Convolutional Network resulted in a performance
drop, confirming that treating all neighbors equally introduces noise that hampers model
performance. The drop was even more pronounced when deep injection was removed,
highlighting the importance of fusing knowledge at higher levels of abstraction. The "w/o
Graph Structure" variant essentially replicates the RAG baseline, confirming that the
topological information contained in the graph edges provides valuable signal beyond the
content of the nodes themselves [16].

6. Discussion

The experimental findings underscore the transformative potential of integrating structured
knowledge graphs into deep learning pipelines via attention mechanisms. The superior
performance of the KG-GAT model suggests that the "black box" nature of large language
models can be effectively illuminated by the structured logic of symbolic Al.

6.1 Implications for Domain Specialization

One of the most significant implications of this research is the reduction in data requirements
for domain adaptation. Traditional fine-tuning requires massive corpora of domain-specific
text to implicitly teach the model facts. Our approach decouples the reasoning engine (the
Language Model) from the knowledge base (the Knowledge Graph). This means that a model
can be updated with new facts simply by updating the Knowledge Graph, without the need for
expensive retraining. This is particularly valuable in fields like medicine or law, where
knowledge is constantly evolving.

Training Data Efficiency Comparison

—O— Proposed KG-GAT
- - m - - Fine-tuning Baseline
1.0
1.0 F J
8 — -
() -
S 6 -
3 -
= 6 -
2
04 ao--m-
-
O +—— T T — T
o 200 400 400 800 1000
Percentage of Training Data Used

Figure 2: Efficiency Chart
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Figure 2 illustrates this efficiency. Even with a fraction of the training data, the KG-GAT model
achieves performance comparable to a fully fine-tuned model, provided the underlying
Knowledge Graph is comprehensive. This suggests a paradigm shift where the focus of
domain adaptation moves from collecting unstructured text to curating high-quality
structured data.

6.2 Limitations and Challenges

Despite the promising results, several limitations persist. First, the performance of the system
is heavily dependent on the quality and completeness of the underlying Knowledge Graph. If
the graph contains errors or lacks coverage, the model's performance will suffer, a
phenomenon known as error propagation. Second, the computational overhead of processing
graphs with Graph Attention Networks is non-negligible. While more efficient than processing
equivalent amounts of text, the graph retrieval and attention mechanisms add latency to the
inference process [17].Furthermore, the entity linking step acts as a bottleneck. If entities in
the input text are not correctly identified or linked to the graph, the subsequent injection
mechanism fails to provide relevant context. Future work must address robustness against
noisy entity linking and explore end-to-end differentiable linking strategies.

6.3 Future Directions

Future research should explore the integration of dynamic Knowledge Graphs that can evolve
during the conversation. Additionally, extending this architecture to multi-modal graphs that
include images or numerical data could further enhance its applicability in domains like
radiology or finance. Investigating the interpretability of the attention weights in the Graph
Attention Network could also provide valuable insights into the reasoning process of the
model, offering a form of "explainable AI" that is highly sought after in regulated industries
[18].

Conclusion

In this paper, we presented a comprehensive framework for enhancing domain-specific Large
Language Models using Knowledge Graph Injection and Graph Attention Networks. By
explicitly modeling the relationships between entities and dynamically attending to relevant
structural context, our approach significantly reduces hallucination and improves factual
accuracy in specialized domains. The empirical results on biomedical and legal datasets
confirm that the synergy between symbolic knowledge representation and neural
probabilistic modeling is a powerful direction for the future of artificial intelligence. As the
field moves toward more robust and reliable systems, architectures that respect and utilize
structured knowledge will likely become the standard for high-stakes applications. The
proposed KG-GAT framework represents a significant step toward bridging the gap between
the statistical fluency of language models and the rigorous precision required by expert
domains.
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