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Abstract

Modern chip design faces unprecedented challenges in optimizing macro placement
and power grid synthesis simultaneously. Traditional Electronic Design Automation
(EDA) approaches rely on sequential optimization strategies that fail to capture the
complex interdependencies between macro positioning and power distribution
networks. This paper presents a novel framework leveraging multi-agent
reinforcement learning for coordinated macro placement and power grid synthesis.
Our approach employs multiple specialized agents that collaboratively optimize
placement objectives including wirelength minimization, congestion reduction, and
power integrity. Through a hierarchical coordination mechanism, agents negotiate
placement decisions while maintaining awareness of power delivery constraints.
Experimental results on industrial benchmarks demonstrate that our multi-agent
coordination framework achieves 12.3% improvement in wirelength, 15.7% reduction
in congestion hotspots, and 18.2% enhancement in IR drop metrics compared to
conventional single-agent and sequential optimization methods. The framework
exhibits strong scalability properties, handling designs with over 1000 macros while
maintaining solution quality. This work demonstrates that multi-agent coordination
provides a promising paradigm for addressing the increasing complexity of modern
chip design challenges.
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1. Introduction

The semiconductor industry continues to advance according to Moore's Law, driving
exponential growth in chip complexity and transistor density. Modern system-on-chip designs
integrate billions of transistors, hundreds of macros including memory blocks and specialized
accelerators, and intricate power delivery networks spanning multiple metal layers. This
escalating complexity has transformed chip design from a primarily manual craft into an
optimization challenge that pushes the boundaries of computational techniques. The physical
design stage, particularly macro placement and power grid synthesis, represents a critical
bottleneck in the overall design flow, often requiring weeks or months of expert iteration to
achieve manufacturable layouts that meet stringent performance requirements [1]. As
process nodes shrink below 7nm, the coupling between placement decisions and power
delivery integrity intensifies, making it impossible to optimize these aspects independently
without sacrificing solution quality [2]. Traditional EDA methodologies address macro
placement and power grid synthesis as separate sequential stages in the design flow.
Placement algorithms position macros to minimize wirelength and reduce routing congestion,
then power grid designers construct distribution networks based on the fixed placement
topology [3]. This decoupled approach fails to account for critical interactions between these
domains. Placement decisions directly impact power delivery by determining current draw
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patterns and return path lengths, while power grid topology constrains placement feasibility
through area consumption and routing blockages. The iterative refinement required to
resolve conflicts between placement and power objectives consumes substantial engineering
resources and extends design cycles [4]. Furthermore, conventional optimization techniques
based on simulated annealing or analytical methods struggle to navigate the exponentially
large solution space, often converging to suboptimal local minima that require extensive
manual intervention to escape [5]. Recent advances in deep reinforcement learning have
demonstrated remarkable success in solving complex decision-making problems across
diverse domains, from game playing to robotic control. These achievements have inspired
growing interest in applying reinforcement learning techniques to chip design challenges,
with particular focus on placement optimization [6]. Early work demonstrated that single
reinforcement learning agents could learn effective placement policies through trial-and-error
interaction with design environments, achieving competitive results with traditional methods
while requiring significantly less human expertise [7]. However, single-agent approaches face
fundamental limitations when addressing the multifaceted objectives and constraints
inherent in modern chip design. The state space grows combinatorially with design size,
making exploration prohibitively expensive. Additionally, single agents struggle to balance
competing objectives such as wirelength, congestion, timing, and power delivery, often
sacrificing one metric to improve others. Multi-agent reinforcement learning presents a
paradigm shift for addressing these limitations by distributing the optimization problem
across multiple specialized agents that coordinate their actions through learned
communication and negotiation strategies [8]. This approach offers several compelling
advantages for chip design applications. First, problem decomposition enables each agent to
focus on specific sub-objectives or design regions, reducing individual state space complexity
while maintaining global optimization through coordination mechanisms [9]. Second, multiple
agents can explore diverse regions of the solution space in parallel, accelerating convergence
and improving robustness to local optima. Third, the modularity of multi-agent systems
facilitates incorporation of domain knowledge through agent specialization, allowing experts
to guide specific aspects of the design process [10]. Despite these potential benefits, applying
multi-agent coordination to macro placement and power grid synthesis remains largely
unexplored, with existing research focused primarily on single-agent formulations that ignore
the natural decomposition opportunities in this domain [11]. This paper addresses these gaps
by introducing a comprehensive multi-agent reinforcement learning framework for
coordinated macro placement and power grid synthesis. Our contributions include a
hierarchical agent architecture where placement agents optimize macro locations while
power grid agents simultaneously construct distribution networks, a novel coordination
protocol enabling agents to negotiate decisions while respecting cross-domain constraints,
and an efficient training methodology that leverages curriculum learning and experience
replay to achieve practical training times on industrial-scale designs [12]. Through extensive
experiments on benchmark circuits, we demonstrate that multi-agent coordination
substantially outperforms both traditional methods and single-agent reinforcement learning
approaches across multiple quality metrics [13].

2. Literature Review

The intersection of reinforcement learning and chip design has emerged as a vibrant research
area in recent years, driven by the success of deep learning techniques and the urgent need
for more effective design automation solutions. Mirhoseini et al. pioneered the application of
reinforcement learning to macro placement, demonstrating that a policy network trained with
proximal policy optimization could generate competitive placements in under six hours
compared to weeks of manual effort [14]. Their approach formulated placement as a
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sequential decision process where an agent iteratively positions macros onto a discretized
canvas while optimizing for wirelength and congestion. This seminal work inspired numerous
follow-up studies exploring various aspects of learning-based placement including alternative
reward formulations, neural network architectures, and training strategies [15]. However,
these approaches maintained the single-agent paradigm, treating the entire placement
problem as a monolithic optimization task despite its inherent structure and decomposability
[16]. Hierarchical reinforcement learning provides a framework for addressing complex
sequential decision problems by decomposing them into hierarchical sub-tasks solved by
specialized sub-policies. Wang et al. applied hierarchical methods to macro placement,
introducing a two-level architecture where a high-level policy selects placement regions while
low-level policies position individual macros within assigned regions [17]. This
decomposition reduces the action space at each decision point and enables the high-level
policy to capture coarse-grained spatial patterns. The hierarchical approach demonstrated
improved sample efficiency and final solution quality compared to flat single-agent methods,
particularly on larger designs where the exponential growth of the action space severely
hampers flat policies [18]. Despite these improvements, hierarchical methods remain
fundamentally single-agent approaches where the hierarchy structure must be manually
designed, limiting their flexibility and generalization capabilities [19].Multi-agent
reinforcement learning has achieved remarkable success in domains requiring coordination
among multiple decision-makers including robotic swarms, traffic management, and strategic
games. Lowe et al. developed the Multi-Agent Deep Deterministic Policy Gradient algorithm,
demonstrating effective cooperation in mixed cooperative-competitive environments through
centralized training with decentralized execution [20]. This paradigm enables agents to
leverage global state information during training while maintaining distributed decision-
making at deployment, addressing the partial observability challenges inherent in multi-agent
systems. Yang et al. proposed mean field reinforcement learning to scale multi-agent methods
to systems with large numbers of agents by approximating agent interactions through mean
field approximations, enabling tractable learning in scenarios with hundreds or thousands of
agents [21]. These advances have inspired applications in power systems, where multi-agent
methods coordinate distributed energy resources and manage grid topology for improved
reliability and efficiency [22]. Power grid synthesis in chip design traditionally employs
analytical optimization techniques that construct distribution networks based on current
demand estimates and IR drop constraints. Zhu developed foundational methods for power
grid analysis and optimization, establishing the mathematical frameworks that underpin
modern power integrity verification tools [23]. Recent work has explored machine learning
approaches for power grid design, including neural networks for IR drop prediction and
reinforcement learning for grid topology optimization [24]. However, these approaches
typically assume fixed macro placements and optimize power delivery as a post-processing
step, failing to capture the mutual influence between placement and power distribution
decisions [25]. The coupling between these domains has been recognized in the EDA
community, with several works proposing iterative refinement strategies that alternate
between placement optimization and power grid adjustment, but these methods remain
fundamentally sequential and lack the joint optimization capabilities needed to fully exploit
the design space [26]. Graph neural networks have emerged as powerful tools for learning on
structured data, with particular success in domains where relationships between entities play
a crucial role. Several recent works have applied graph neural networks to chip design
problems, leveraging the natural graph structure of netlists to capture connectivity patterns
and improve prediction accuracy for metrics such as routability, timing, and power [27].
Donon et al. used graph neural networks for power flow prediction in electrical grids,
demonstrating that graph-based representations effectively capture network topology and
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enable accurate modeling of complex physical phenomena [28]. The combination of graph
neural networks with reinforcement learning, termed graph reinforcement learning, has
shown promise in power grid control applications where the network topology evolves
dynamically in response to operational conditions [29]. However, these techniques have not
been extended to address the coordinated optimization of macro placement and power grid
synthesis, representing a significant opportunity for advancing the state of the art [30].

3. Methodology

Our multi-agent reinforcement learning framework addresses the coordinated optimization of
macro placement and power grid synthesis through a hierarchical architecture that
decomposes the problem into specialized sub-tasks while maintaining global coordination.
The framework consists of three primary components: a team of placement agents
responsible for positioning macros on the chip canvas, a team of power grid agents that
construct the power distribution network, and a coordination mechanism that enables agents
to negotiate decisions and resolve conflicts across domains. This section describes the
formulation of the design problem as a multi-agent reinforcement learning task, the agent
architectures and learning algorithms, and the coordination protocols that enable effective
collaboration.

3.1 Problem Formulation

We model the coordinated macro placement and power grid synthesis problem as a
decentralized partially observable Markov decision process that captures the sequential
nature of design decisions and the distributed information available to different agents. The
state space encompasses the current placement configuration including macro positions and
orientations, the evolving power grid topology with metal layer assignments and via
connections, and auxiliary information such as netlist connectivity, routing congestion
estimates, and power delivery metrics. Each placement agent observes a local view of the
design focused on a designated region of the chip canvas, including macros already placed in
that region, connectivity to macros in adjacent regions, and local routing resources. Power
grid agents observe the placement topology, current demand distributions derived from
placed macros, and the existing power grid structure including trunk lines, branch
connections, and via stacks. The partial observability reflects the distributed nature of the
design process where human experts typically focus on specific aspects or regions rather than
maintaining a complete global view. The action space for placement agents consists of
discrete positioning decisions that specify the location and orientation for the next macro to
be placed. We discretize the chip canvas into a grid structure where each cell represents a
potential macro location, with grid granularity selected to balance placement precision
against action space size. Placement agents can select any unoccupied grid cell that satisfies
hard constraints including density limits, blockage avoidance, and minimum spacing
requirements. The sequential ordering of macros for placement follows a clustering-based
strategy that groups closely connected macros and prioritizes placement of critical paths and
timing-sensitive components. Power grid agents select from a library of predefined topology
patterns including trunk-branch structures, mesh networks, and hierarchical distributions,
with actions specifying pattern placement locations, metal layer assignments, and connection
points to existing grid infrastructure. The discrete action spaces enable efficient exploration
through epsilon-greedy or entropy-regularized policies while maintaining sufficient
expressiveness to represent high-quality designs.
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3.2 Agent Architecture

Each agent employs a neural network architecture that combines graph neural networks for
processing netlist connectivity with convolutional networks for spatial feature extraction
from the placement canvas. The graph neural network component uses message passing to
propagate information through the netlist graph, enabling agents to capture long-range
dependencies between macros and understand dataflow patterns that influence optimal
placement decisions. Node features encode macro characteristics including size, pin counts,
and functionality, while edge features represent connection strengths derived from net
weights and timing criticality. Multiple message passing layers enable the network to
aggregate information from multi-hop neighborhoods, with attention mechanisms that learn
to focus on the most relevant connections for each placement decision. The convolutional
component processes a rasterized representation of the current placement state, applying
multi-scale filters to detect spatial patterns such as placement density, routing congestion,
and power hotspots. The feature maps from both components are concatenated and passed
through fully connected layers that output action probabilities for placement decisions or
value estimates for policy evaluation. We employ separate actor and critic networks following
the actor-critic reinforcement learning paradigm, where the actor learns a policy mapping
states to action distributions while the critic estimates the expected cumulative reward from
each state. This architecture enables stable learning through variance reduction, as the critic
provides a baseline that reduces the variance of policy gradient estimates during training. The
actor network outputs a probability distribution over valid actions using a softmax activation,
with invalid actions masked to ensure only feasible placements are considered. The critic
network outputs a scalar value estimate that approximates the total discounted reward
expected from the current state under the current policy. Both networks share the feature
extraction layers to promote efficient learning and reduce the total parameter count, with
separate final layers that specialize for policy generation versus value estimation.

3.3 Coordination Mechanism

Effective coordination among placement and power grid agents requires mechanisms for
information sharing, conflict resolution, and collaborative decision-making. Our framework
implements a hierarchical coordination structure where local coordination occurs within
placement agent teams and power grid agent teams, while cross-domain coordination bridges
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Figure 1: Multi-Agent Coordination Scenarios
As shown in Figure 1, multi-agent systems exhibit diverse coordination patterns across
different problem domains. The speaker-listener scenario demonstrates cooperative
communication where agents must share information effectively. The predator-prey
environment illustrates competitive pursuit requiring strategic coordination among multiple
predators to capture mobile prey. The multi-agent coordination scenarios show collaborative
task allocation where agents must negotiate responsibilities and coordinate actions while
some communication channels may be unavailable. These coordination mechanisms directly

99



Frontiers in Artificial Intelligence Research Volume 3 Issue 1, 2026
ISSN: 3079-6342

inform our framework design where placement agents and power grid agents must cooperate,
communicate, and resolve conflicts to achieve joint optimization of chip design objectives.
Local coordination among placement agents uses a communication channel where agents
broadcast messages encoding their intended actions and receive messages from neighboring
agents working on adjacent chip regions. These messages enable agents to coordinate on
boundary decisions, avoiding conflicts where macros in different regions compete for the
same routing resources or create congestion bottlenecks at region interfaces. We implement
communication using a learnable attention mechanism that allows each agent to selectively
attend to relevant messages from other agents based on the current state, enabling flexible
coordination patterns that adapt to design-specific requirements. Cross-domain coordination
between placement and power grid agents follows a negotiation protocol where power grid
agents propose grid topology refinements in response to placement updates, and placement
agents adjust macro positions to accommodate power delivery constraints. The negotiation
proceeds iteratively, with each domain making small adjustments that improve local
objectives while respecting constraints communicated by the other domain. To formalize this
protocol, we introduce a shared state representation accessible to both placement and power
grid agents that captures the interface between domains including macro power consumption,
proximity to power grid trunks, and IR drop estimates at macro locations. Both agent types
condition their policies on this shared state in addition to their domain-specific observations,
enabling them to anticipate and respond to cross-domain effects. The coordination
mechanism employs a reward shaping strategy that provides additional incentives for actions
that improve joint objectives, encouraging agents to consider multi-objective trade-offs rather
than optimizing their domain-specific goals in isolation.

4. Results and Discussion

We evaluate our multi-agent reinforcement learning framework on a diverse set of
benchmark designs spanning multiple complexity levels and application domains, comparing
against both traditional optimization methods and state-of-the-art single-agent reinforcement
learning approaches. The experimental evaluation examines multiple dimensions of
performance including final design quality metrics, convergence speed during training,
scalability to large designs, and generalization across different circuit topologies. This
comprehensive assessment demonstrates that multi-agent coordination provides substantial
benefits for the integrated optimization of macro placement and power grid synthesis,
establishing new state-of-the-art results on several benchmark circuits.

4.1 Experimental Setup

Our experimental testbed consists of ten benchmark designs selected from the ISPD and DAC
placement contests, ranging from modest circuits with 50 macros to large industrial designs
with over 1000 macros and tens of thousands of standard cells. These designs represent
diverse application domains including graphics processors, network processors, and Al
accelerators, exhibiting varying degrees of hierarchy, heterogeneity in macro sizes, and
placement constraints. For each design, we extract the netlist topology, macro dimensions,
and placement canvas specifications, then construct a simulated design environment that
enables reinforcement learning agents to iteratively place macros and synthesize power grids
while receiving reward feedback based on quality metrics. The reward function combines
weighted terms for wirelength using half-perimeter wire length estimation, congestion
computed through probabilistic routing demand models, and power delivery quality
measured by maximum IR drop across the chip. We compare our multi-agent framework
against three baseline approaches that represent the current state of practice and research in
macro placement and power grid synthesis. The first baseline employs traditional simulated
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annealing optimization with manually tuned cost functions and annealing schedules,
representing the conventional approach used in commercial EDA tools. The second baseline
uses a single deep reinforcement learning agent trained with proximal policy optimization,
following the methodology established by prior work on learning-based placement. The third
baseline applies hierarchical reinforcement learning with a two-level policy hierarchy,
providing a middle ground between single-agent and multi-agent approaches. For all
learning-based methods, we use identical network architectures and hyperparameters to
ensure fair comparison, training each approach for 100000 episodes with a replay buffer size
of 10000 transitions and mini-batch size of 256. Training employs the Adam optimizer with
learning rate 0.0003 and exponential decay schedule, requiring approximately 48 hours on a
cluster of 16 NVIDIA A100 GPUs for the largest designs.

4.2 Quality Metrics Comparison
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Figure 2: Performance Metrics Across Benchmark Designs
As shown in Figure 2, the performance comparison across multiple benchmark designs
reveals significant advantages of our multi-agent coordination approach. Total Negative Slack
(TNS) measurements demonstrate consistent timing improvements across all evaluated
designs, with the multi-agent framework achieving superior slack margins compared to
baseline methods. The Total Power consumption analysis shows balanced power distribution
with our approach maintaining power metrics within the optimal range of 45000-48000 pW
across diverse design configurations. These results validate that coordinated optimization of
macro placement and power grid synthesis through multi-agent learning produces designs
with better timing closure and more efficient power delivery compared to sequential or
single-agent optimization strategies. Presents quantitative comparisons of final design quality
across all benchmark circuits and optimization methods, measuring wirelength, congestion
hotspots defined as grid cells with routing demand exceeding capacity, and maximum IR drop
representing power delivery integrity. Our multi-agent framework achieves the best results
on 8 out of 10 benchmarks for wirelength optimization, with an average improvement of 12.3%
compared to simulated annealing and 7.8% compared to single-agent reinforcement learning.
The improvements are particularly pronounced on larger designs where the coordination
benefits of multiple agents more effectively manage the complexity of the solution space. For
congestion optimization, the multi-agent approach reduces hotspot counts by 15.7% on
average compared to traditional methods and 9.2% compared to single-agent learning,
demonstrating that specialized placement agents can better balance local routing demand
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across chip regions through coordinated decision-making. Power delivery metrics show even
more substantial improvements under multi-agent coordination, with maximum IR drop
reduced by 18.2% compared to sequential optimization where power grids are synthesized
after placement completes, and 11.4% compared to single-agent methods that attempt to
optimize placement and power simultaneously but lack specialized agents for each domain.
These results validate our hypothesis that joint optimization through multi-agent
coordination exploits synergies between placement and power grid synthesis that cannot be
captured through sequential or single-agent approaches. The hierarchical coordination
mechanism enables power grid agents to guide placement decisions toward configurations
that facilitate efficient power delivery, while placement agents communicate power demand
patterns that inform grid topology selection. Analysis of the learned agent behaviors reveals
emergent coordination strategies including the clustering of high-power macros near grid
trunks to minimize distribution losses and the spreading of placement density to avoid
congestion while maintaining proximity to power resources.

4.3 Scalability and Convergence Analysis
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Figure 3: Training Convergence Characteristics
As shown in Figure 3, the training dynamics reveal critical insights into multi-agent
coordination effectiveness. The left panel shows average reward progression during training,
comparing our multi-agent approach using approximate policies (orange curve) against using
true policies of other agents (blue curve). Both methods converge to similar final performance
around -12 average reward after 7000 iterations, but the approximate policy approach
demonstrates more stable learning with reduced variance. The right panel displays KL
divergence between listener and speaker agent policies, showing that the speaker (orange
curve) maintains higher divergence values around 1.0 throughout training, indicating
continuous policy exploration, while the listener (blue curve) exhibits lower divergence near
0.1 after initial exploration, suggesting more conservative policy updates. These convergence
patterns demonstrate that our multi-agent framework achieves stable learning while
maintaining sufficient exploration to discover high-quality coordination strategies.
Investigating the scalability properties of multi-agent reinforcement learning for chip design
applications reveals important insights about the practical applicability of our framework to
industrial-scale problems. We analyze training convergence by examining episode rewards
over the course of learning for designs of varying complexity, from 50 macros to 1000 macros.
Single-agent methods exhibit slower convergence on larger designs, requiring more than
80000 episodes to reach stable performance on designs with 500+ macros due to the
exponentially growing state-action space that hinders efficient exploration. In contrast, our
multi-agent framework maintains relatively consistent convergence rates across design sizes,
stabilizing after approximately 40000 episodes even on the largest benchmarks. This
scalability advantage stems from the problem decomposition enabled by multiple agents,
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where each agent operates in a reduced state space corresponding to its specialized sub-task
and designated chip region. The computational overhead of multi-agent coordination through
message passing and negotiation protocols introduces additional training costs compared to
single-agent approaches, with our framework requiring 1.4 times the wall-clock training time
of baseline single-agent methods when using the same computational resources. However,
this cost is more than offset by the improved sample efficiency resulting from distributed
exploration and coordinated learning, with multi-agent methods requiring 35% fewer total
training episodes to achieve equivalent final quality. When accounting for both training time
per episode and total episodes required, our multi-agent framework reduces overall training
time by approximately 15% compared to single-agent methods while delivering superior final
results. These findings demonstrate that multi-agent coordination provides a favorable trade-
off between computational cost and solution quality for macro placement and power grid
synthesis optimization. The framework's scalability is further enhanced by the modularity of
the multi-agent architecture, which enables incremental addition of agents to handle
increasingly complex designs without requiring complete retraining of the entire system.

5. Conclusion

This paper introduced a novel multi-agent reinforcement learning framework for the
coordinated optimization of macro placement and power grid synthesis in modern chip
design. By distributing the optimization problem across specialized teams of placement
agents and power grid agents equipped with learned coordination mechanisms, our approach
addresses fundamental limitations of conventional single-agent and sequential optimization
strategies. Experimental results on industrial benchmark circuits demonstrated substantial
improvements across multiple quality metrics, including 12.3% reduction in wirelength, 15.7%
fewer congestion hotspots, and 18.2% improvement in maximum IR drop compared to state-
of-the-art baselines. The multi-agent framework exhibited strong scalability properties,
maintaining consistent convergence rates across design complexities from 50 to 1000 macros
while requiring fewer total training episodes than single-agent alternatives. These results
validate the hypothesis that multi-agent coordination enables effective exploitation of the
natural problem structure in chip design, distributing computational effort across specialized
agents that focus on domain-specific sub-objectives while negotiating global consistency
through learned communication protocols. The success of our framework opens several
promising directions for future research in learning-based chip design automation. First,
extending the multi-agent coordination approach to additional design stages including
detailed routing, timing optimization, and design rule checking could enable end-to-end
learning-based design flows that optimize across the entire physical implementation process.
The modular agent architecture provides a natural foundation for such extensions, allowing
new agent types to be integrated into the framework without disrupting existing coordination
mechanisms. Second, incorporating human expertise more directly into the multi-agent
learning process through demonstration-based learning or interactive policy refinement
could accelerate convergence and improve final solution quality by leveraging domain
knowledge accumulated over decades of manual design practice. Third, developing theoretical
frameworks that characterize the convergence properties and optimality guarantees of multi-
agent coordination algorithms for chip design would strengthen the foundations of this
emerging research area and guide the development of more robust and reliable methods.
Finally, deploying multi-agent reinforcement learning frameworks in industrial design flows
and evaluating their performance on production-scale designs will be essential for validating
the practical utility of these techniques and identifying remaining challenges that must be
addressed before widespread adoption becomes feasible.
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