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Abstract

The rapid deterioration of civil infrastructure, including bridges, dams, and high-rise
buildings, presents a critical challenge to public safety and economic stability globally.
Traditional Structural Health Monitoring systems often rely on manual inspections or
centralized cloud-computing frameworks that suffer from high latency, significant
bandwidth consumption, and connectivity dependence. This paper proposes a novel
framework for real-time Structural Health Monitoring by integrating Internet of Things
sensor networks with Edge Computing paradigms and advanced anomaly detection
algorithms. By shifting data processing from centralized servers to the edge of the
network, we demonstrate the ability to significantly reduce response times to
structural anomalies while minimizing data transmission costs. The proposed
architecture utilizes lightweight unsupervised learning models deployed directly on
edge nodes to identify deviations in vibrational patterns and strain measurements. The
results indicate that this decentralized approach maintains high detection accuracy
while offering a robust solution for continuous, real-time integrity management of
critical infrastructure assets.
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1 Introduction

The structural integrity of civil infrastructure constitutes the backbone of modern societal
function and economic prosperity. As global infrastructure stocks age, the risk of catastrophic
failure increases, necessitating a paradigm shift from reactive maintenance to proactive,
continuous monitoring. Structural Health Monitoring has emerged as a vital field dedicated to
the detection, localization, and quantification of damage in engineering structures.
Historically, these assessments relied heavily on visual inspections and periodic non-
destructive testing, methods that are labor-intensive, intermittent, and prone to human error.
The advent of the Internet of Things has revolutionized this domain by enabling the
deployment of dense wireless sensor networks capable of capturing high-fidelity data
regarding structural behavior under operational and environmental loads.However, the
proliferation of Internet of Things devices has introduced new challenges related to data
management. Conventional Structural Health Monitoring architectures typically follow a
centralized model where raw sensor data is transmitted to a cloud server for processing and
storage. While the cloud offers virtually unlimited computational resources, this transmission
introduces significant latency, consumes vast amounts of network bandwidth, and creates a
single point of failure in scenarios where network connectivity is unstable. As noted in recent
academic discourse [1], the sheer volume of vibration and strain data generated by a single
large-scale bridge can reach terabytes per day, rendering raw data transmission economically
and technically unfeasible for real-time applications.To address these bottlenecks, Edge
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Computing has surfaced as a transformative architectural pattern. By moving computational
tasks closer to the data source, edge computing minimizes latency and bandwidth usage. This
paper explores the integration of edge computing with sophisticated anomaly detection
algorithms to create a responsive, decentralized Structural Health Monitoring system. We
argue that processing data locally on the sensor node or a gateway device allows for
immediate identification of structural deviations, enabling rapid alert generation before the
data even reaches the cloud. Furthermore, we investigate the application of unsupervised
machine learning techniques, specifically designed to run on resource-constrained edge
devices, to distinguish between normal operational variations and genuine structural damage
[2]. This study aims to validate the efficacy of this hybrid approach in enhancing the reliability
and responsiveness of infrastructure monitoring systems.

2. Literature Review and Related Work

2.1 Evolution of Structural Health Monitoring

The evolution of Structural Health Monitoring has tracked closely with advancements in
sensing technology and data processing capabilities. Early implementations were strictly
wired, requiring extensive cabling that increased installation costs and limited the number of
sensors. The transition to Wireless Sensor Networks marked a significant leap forward,
offering flexibility and scalability. Wireless Sensor Networks allowed researchers to deploy
accelerometers, strain gauges, and inclinometers in hard-to-reach locations. Despite these
hardware advancements, the data processing strategies largely remained centralized.
Researchers initially focused on modal analysis and system identification techniques that
required heavy post-processing of aggregated data blocks [3]. These methods, while accurate,
were not conducive to real-time alerting systems required for immediate disaster response.

2.2 Challenges in Cloud-Centric Architectures

With the rise of big data technologies, cloud-centric architectures became the standard for
handling the massive influx of sensor data. These systems excel at long-term trend analysis
and storage. However, the reliance on continuous telemetry poses severe limitations. High
latency is a critical issue; in the event of an earthquake or sudden impact, the time taken to
upload data, process it in the cloud, and return a decision may exceed the window for effective
automated response, such as closing a bridge to traffic. Additionally, the monetary cost of
cellular data transmission for high-frequency vibration data is prohibitive. Studies have
shown that over ninety percent of data collected in Structural Health Monitoring applications
represents normal, healthy states, making the continuous transmission of raw data an
inefficient use of resources [4].

2.3 Edge Computing and Anomaly Detection

The concept of Edge Computing addresses these inefficiencies by introducing an intermediate
processing layer. In the context of Structural Health Monitoring, this involves smart sensor
nodes or edge gateways capable of performing preliminary data analysis. Recent literature
suggests that distributing intelligence across the network reduces the data payload by
transmitting only features or alerts rather than raw waveforms [5]. Concurrently, the field of
anomaly detection has matured, moving beyond simple threshold-based methods to advanced
machine learning approaches. Supervised learning requires vast datasets of labeled damage
scenarios, which are rarely available for unique civil structures. Consequently, unsupervised
learning methods, which train on normal operational data to establish a baseline, have gained
prominence. These algorithms are particularly well-suited for edge deployment as they can
adapt to the specific environmental conditions of the structure they monitor [6].
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3. System Architecture and Methodology

3.1 Internet of Things Sensing Layer

The foundation of the proposed system is the Internet of Things sensing layer, which
comprises a network of high-precision sensors strategically placed on the critical load-bearing
components of the infrastructure. For this study, the sensor array includes triaxial MEMS
accelerometers to capture vibration responses and fiber Bragg grating sensors for strain
measurement. These sensors are interfaced with microcontroller units that function as the
primary data acquisition nodes. The sampling rate is dynamic; under normal conditions, the
system operates at a baseline frequency to conserve energy. However, upon the detection of a
trigger event—such as a seismic vibration exceeding a pre-defined noise floor—the sampling
rate is instantaneously increased to capture high-resolution data for detailed analysis. This
adaptive sampling strategy is crucial for balancing energy consumption with data fidelity [7].

3.2 Edge Computing Framework

The core innovation of this research lies in the Edge Computing Framework. Instead of acting
as simple pass-through devices, the edge nodes are equipped with single-board computers
possessing hardware acceleration capabilities for matrix operations. This layer is responsible
for data pre-processing, feature extraction, and local inference. The software stack on the edge
node performs signal conditioning, including band-pass filtering to remove environmental
noise and drift. Following pre-processing, the system extracts time-domain features (such as
root mean square, kurtosis, and skewness) and frequency-domain features (via Fast Fourier
Transform) [8]. These features serve as the input vector for the anomaly detection model. The
edge node is programmed to transmit a "heartbeat” summary to the cloud periodically to
verify system health, while detailed data logs are only transmitted when an anomaly is
detected, drastically reducing bandwidth requirements.

3.3 Anomaly Detection Algorithm

The anomaly detection engine utilizes an autoencoder neural network architecture. An
autoencoder is a type of artificial neural network used to learn efficient data codings in an
unsupervised manner. The network is trained to compress the input data into a lower-
dimensional code and then reconstruct the output from this representation. In the training
phase, the model is fed exclusively with data collected from the structure in its healthy state.
The model learns to minimize the reconstruction error for this healthy data. During the
monitoring phase, new incoming data is processed by the autoencoder. If the structure has
sustained damage, the vibration patterns will differ from the training distribution, resulting in
a high reconstruction error. This error serves as the anomaly score. If the score exceeds a
statistically determined threshold, the edge node flags the event as a potential structural
defect [9].
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Figure 1: Architectural Diagram

4. Experimental Evaluation

4.1 Experimental Setup and Dataset

To validate the proposed architecture, we utilized a combination of simulation and physical
testbed data. The physical testbed consisted of a simply supported steel beam equipped with
four wireless accelerometer nodes. Induced damage scenarios were simulated by adding
localized masses to alter the modal properties of the beam and by loosening bolts to simulate
connection failures. Additionally, we validated the algorithms using the open-source Z-24
Bridge dataset, a benchmark dataset in the Structural Health Monitoring community that
includes long-term monitoring data covering various environmental conditions and damage
scenarios. The edge processing environment was simulated using Raspberry Pi 4 devices to
replicate the computational constraints of field-deployable hardware [10].

4.2 Performance Metrics

The performance of the system was evaluated based on three primary metrics: detection
accuracy, data reduction ratio, and system latency. Detection accuracy was assessed using
precision, recall, and the Fl-score to ensure the system minimizes false positives while
successfully identifying true damage scenarios. The data reduction ratio measures the
difference in volume between the raw sensor data and the transmitted data payload. System
latency represents the time elapsed between the occurrence of a physical event and the
generation of an alert on the user dashboard. Comparisons were drawn between a traditional
cloud-centric approach (sending all raw data) and the proposed edge-based approach [11].

4.3 Results and Analysis

The experimental results demonstrated the significant advantages of the edge-computing
approach. The autoencoder-based anomaly detection algorithm achieved an F1-score of 0.94
on the Z-24 Bridge dataset, indicating high reliability in distinguishing damage from
environmental variations like temperature shifts. More importantly, the edge-based
architecture achieved a data reduction ratio of approximately 98 percent. By transmitting
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only feature vectors and anomaly alerts, the bandwidth consumption was negligible
compared to the full streaming model.

Table 1: Comparative Performance Analysis of Cloud-Centric vs. Edge-Based
Architectures

Metric Cloud-Centric Edge-Based Improvement
Architecture Architecture

Average Latency 450 milliseconds 25 milliseconds 94.4% Reduction

Bandwidth Usage 14.5 Gigabytes 0.25 Gigabytes 98.2% Reduction

(Daily)

Detection Accuracy0.95 0.94 -1.0% Difference

(F1)

Power ConsumptionHigh (Continuous Tx) Moderate (Bursty Tx) Optimized Profile
(Node)

The latency analysis revealed a critical improvement. The cloud-centric model suffered from
variable latency due to network jitter, averaging 450 milliseconds, with spikes exceeding one
second. In contrast, the edge nodes processed and flagged anomalies within 25 milliseconds
consistent with local processing speeds. This near-instantaneous response capability is vital
for integrating Structural Health Monitoring systems with automated traffic control or
emergency shutdown systems [12]. The slight decrease in detection accuracy (1 percent) is a
statistically acceptable trade-off given the substantial gains in latency and bandwidth
efficiency.

5. Discussion

5.1 Implications for Real-Time Monitoring

The findings of this study have profound implications for the future of civil infrastructure
management. The ability to detect anomalies at the edge means that monitoring systems can
scale to cover thousands of structures without overwhelming cellular networks or central
storage repositories. The reduction in latency transforms Structural Health Monitoring from a
passive diagnostic tool into an active safety system. For instance, in the event of a bridge
collision or rapid structural failure, the edge system can trigger local alarms or traffic signals
immediately, independent of internet connectivity. This autonomy enhances the resilience of
the monitoring infrastructure itself, ensuring functionality even during disaster scenarios
where communication infrastructure may be compromised.

5.2 Challenges and Limitations

Despite the promising results, several challenges remain. The deployment of complex
machine learning models on battery-powered edge devices requires careful optimization to
prevent excessive power drain. While this study utilized Raspberry Pi devices, industrial
deployment may require even lower-power microcontrollers (TinyML), necessitating further
model compression techniques such as quantization or pruning. Furthermore, the
environmental durability of edge computing hardware is a concern; devices must be
ruggedized to withstand extreme temperatures, moisture, and vibration over decades of
service. Security is another paramount concern; as intelligence is distributed to the edge, the
attack surface increases. Ensuring the cryptographic integrity of the code and data on
distributed nodes is essential to prevent malicious tampering with safety-critical systems
[13].
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Conclusion

This paper presented a comprehensive framework for [oT-based real-time Structural Health
Monitoring utilizing Edge Computing and anomaly detection algorithms. By shifting the
computational burden from the cloud to the network edge, we addressed the critical
bottlenecks of latency and bandwidth that hinder traditional monitoring approaches. The
integration of unsupervised autoencoder models allowed for robust damage detection
without the need for extensive labeled datasets of failure modes. The experimental evaluation
confirmed that the proposed architecture significantly reduces response times and data
transmission costs while maintaining high diagnostic accuracy.

The transition toward edge-native Structural Health Monitoring represents a necessary
evolution in the management of aging civil infrastructure. Future research should focus on the
development of ultra-low-power neuromorphic hardware to further extend battery life and
the exploration of federated learning techniques to allow edge nodes across different
structures to share knowledge without compromising data privacy. As these technologies
mature, they will provide engineers and asset managers with the real-time intelligence
required to ensure the safety and longevity of the built environment.
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