
Frontiers in Applied Physics and Mathematics Volume 3 Issue 1, 2026 

e-ISSN: 3079-6377   p-ISSN: 3079-6369  

 

9 

IoT-Based Real-Time Structural Health Monitoring for Civil 
Infrastructure using Edge Computing and Anomaly Detection 

Algorithms 
 Jun-Ho Jeong, Ji-Woo Kang 
Department of Civil and Environmental Engineering, University of Auckland, Auckland 1010, 

New Zealand 

Abstract 

The rapid deterioration of civil infrastructure, including bridges, dams, and high-rise 
buildings, presents a critical challenge to public safety and economic stability globally. 
Traditional Structural Health Monitoring systems often rely on manual inspections or 
centralized cloud-computing frameworks that suffer from high latency, significant 
bandwidth consumption, and connectivity dependence. This paper proposes a novel 
framework for real-time Structural Health Monitoring by integrating Internet of Things 
sensor networks with Edge Computing paradigms and advanced anomaly detection 
algorithms. By shifting data processing from centralized servers to the edge of the 
network, we demonstrate the ability to significantly reduce response times to 
structural anomalies while minimizing data transmission costs. The proposed 
architecture utilizes lightweight unsupervised learning models deployed directly on 
edge nodes to identify deviations in vibrational patterns and strain measurements. The 
results indicate that this decentralized approach maintains high detection accuracy 
while offering a robust solution for continuous, real-time integrity management of 
critical infrastructure assets. 
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1 Introduction 

The structural integrity of civil infrastructure constitutes the backbone of modern societal 
function and economic prosperity. As global infrastructure stocks age, the risk of catastrophic 
failure increases, necessitating a paradigm shift from reactive maintenance to proactive, 
continuous monitoring. Structural Health Monitoring has emerged as a vital field dedicated to 
the detection, localization, and quantification of damage in engineering structures. 
Historically, these assessments relied heavily on visual inspections and periodic non-
destructive testing, methods that are labor-intensive, intermittent, and prone to human error. 
The advent of the Internet of Things has revolutionized this domain by enabling the 
deployment of dense wireless sensor networks capable of capturing high-fidelity data 
regarding structural behavior under operational and environmental loads.However, the 
proliferation of Internet of Things devices has introduced new challenges related to data 
management. Conventional Structural Health Monitoring architectures typically follow a 
centralized model where raw sensor data is transmitted to a cloud server for processing and 
storage. While the cloud offers virtually unlimited computational resources, this transmission 
introduces significant latency, consumes vast amounts of network bandwidth, and creates a 
single point of failure in scenarios where network connectivity is unstable. As noted in recent 
academic discourse [1], the sheer volume of vibration and strain data generated by a single 
large-scale bridge can reach terabytes per day, rendering raw data transmission economically 
and technically unfeasible for real-time applications.To address these bottlenecks, Edge 
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Computing has surfaced as a transformative architectural pattern. By moving computational 
tasks closer to the data source, edge computing minimizes latency and bandwidth usage. This 
paper explores the integration of edge computing with sophisticated anomaly detection 
algorithms to create a responsive, decentralized Structural Health Monitoring system. We 
argue that processing data locally on the sensor node or a gateway device allows for 
immediate identification of structural deviations, enabling rapid alert generation before the 
data even reaches the cloud. Furthermore, we investigate the application of unsupervised 
machine learning techniques, specifically designed to run on resource-constrained edge 
devices, to distinguish between normal operational variations and genuine structural damage 
[2]. This study aims to validate the efficacy of this hybrid approach in enhancing the reliability 
and responsiveness of infrastructure monitoring systems. 

2. Literature Review and Related Work 

2.1 Evolution of Structural Health Monitoring 

The evolution of Structural Health Monitoring has tracked closely with advancements in 
sensing technology and data processing capabilities. Early implementations were strictly 
wired, requiring extensive cabling that increased installation costs and limited the number of 
sensors. The transition to Wireless Sensor Networks marked a significant leap forward, 
offering flexibility and scalability. Wireless Sensor Networks allowed researchers to deploy 
accelerometers, strain gauges, and inclinometers in hard-to-reach locations. Despite these 
hardware advancements, the data processing strategies largely remained centralized. 
Researchers initially focused on modal analysis and system identification techniques that 
required heavy post-processing of aggregated data blocks [3]. These methods, while accurate, 
were not conducive to real-time alerting systems required for immediate disaster response. 

2.2 Challenges in Cloud-Centric Architectures 

With the rise of big data technologies, cloud-centric architectures became the standard for 
handling the massive influx of sensor data. These systems excel at long-term trend analysis 
and storage. However, the reliance on continuous telemetry poses severe limitations. High 
latency is a critical issue; in the event of an earthquake or sudden impact, the time taken to 
upload data, process it in the cloud, and return a decision may exceed the window for effective 
automated response, such as closing a bridge to traffic. Additionally, the monetary cost of 
cellular data transmission for high-frequency vibration data is prohibitive. Studies have 
shown that over ninety percent of data collected in Structural Health Monitoring applications 
represents normal, healthy states, making the continuous transmission of raw data an 
inefficient use of resources [4]. 

2.3 Edge Computing and Anomaly Detection 

The concept of Edge Computing addresses these inefficiencies by introducing an intermediate 
processing layer. In the context of Structural Health Monitoring, this involves smart sensor 
nodes or edge gateways capable of performing preliminary data analysis. Recent literature 
suggests that distributing intelligence across the network reduces the data payload by 
transmitting only features or alerts rather than raw waveforms [5]. Concurrently, the field of 
anomaly detection has matured, moving beyond simple threshold-based methods to advanced 
machine learning approaches. Supervised learning requires vast datasets of labeled damage 
scenarios, which are rarely available for unique civil structures. Consequently, unsupervised 
learning methods, which train on normal operational data to establish a baseline, have gained 
prominence. These algorithms are particularly well-suited for edge deployment as they can 
adapt to the specific environmental conditions of the structure they monitor [6]. 
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3. System Architecture and Methodology 

3.1 Internet of Things Sensing Layer 

The foundation of the proposed system is the Internet of Things sensing layer, which 
comprises a network of high-precision sensors strategically placed on the critical load-bearing 
components of the infrastructure. For this study, the sensor array includes triaxial MEMS 
accelerometers to capture vibration responses and fiber Bragg grating sensors for strain 
measurement. These sensors are interfaced with microcontroller units that function as the 
primary data acquisition nodes. The sampling rate is dynamic; under normal conditions, the 
system operates at a baseline frequency to conserve energy. However, upon the detection of a 
trigger event—such as a seismic vibration exceeding a pre-defined noise floor—the sampling 
rate is instantaneously increased to capture high-resolution data for detailed analysis. This 
adaptive sampling strategy is crucial for balancing energy consumption with data fidelity [7]. 

3.2 Edge Computing Framework 

The core innovation of this research lies in the Edge Computing Framework. Instead of acting 
as simple pass-through devices, the edge nodes are equipped with single-board computers 
possessing hardware acceleration capabilities for matrix operations. This layer is responsible 
for data pre-processing, feature extraction, and local inference. The software stack on the edge 
node performs signal conditioning, including band-pass filtering to remove environmental 
noise and drift. Following pre-processing, the system extracts time-domain features (such as 
root mean square, kurtosis, and skewness) and frequency-domain features (via Fast Fourier 
Transform) [8]. These features serve as the input vector for the anomaly detection model. The 
edge node is programmed to transmit a "heartbeat" summary to the cloud periodically to 
verify system health, while detailed data logs are only transmitted when an anomaly is 
detected, drastically reducing bandwidth requirements. 

3.3 Anomaly Detection Algorithm 

The anomaly detection engine utilizes an autoencoder neural network architecture. An 
autoencoder is a type of artificial neural network used to learn efficient data codings in an 
unsupervised manner. The network is trained to compress the input data into a lower-
dimensional code and then reconstruct the output from this representation. In the training 
phase, the model is fed exclusively with data collected from the structure in its healthy state. 
The model learns to minimize the reconstruction error for this healthy data. During the 
monitoring phase, new incoming data is processed by the autoencoder. If the structure has 
sustained damage, the vibration patterns will differ from the training distribution, resulting in 
a high reconstruction error. This error serves as the anomaly score. If the score exceeds a 
statistically determined threshold, the edge node flags the event as a potential structural 
defect [9]. 
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Figure 1: Architectural Diagram 

4. Experimental Evaluation 

4.1 Experimental Setup and Dataset 

To validate the proposed architecture, we utilized a combination of simulation and physical 
testbed data. The physical testbed consisted of a simply supported steel beam equipped with 
four wireless accelerometer nodes. Induced damage scenarios were simulated by adding 
localized masses to alter the modal properties of the beam and by loosening bolts to simulate 
connection failures. Additionally, we validated the algorithms using the open-source Z-24 
Bridge dataset, a benchmark dataset in the Structural Health Monitoring community that 
includes long-term monitoring data covering various environmental conditions and damage 
scenarios. The edge processing environment was simulated using Raspberry Pi 4 devices to 
replicate the computational constraints of field-deployable hardware [10]. 

4.2 Performance Metrics 

The performance of the system was evaluated based on three primary metrics: detection 
accuracy, data reduction ratio, and system latency. Detection accuracy was assessed using 
precision, recall, and the F1-score to ensure the system minimizes false positives while 
successfully identifying true damage scenarios. The data reduction ratio measures the 
difference in volume between the raw sensor data and the transmitted data payload. System 
latency represents the time elapsed between the occurrence of a physical event and the 
generation of an alert on the user dashboard. Comparisons were drawn between a traditional 
cloud-centric approach (sending all raw data) and the proposed edge-based approach [11]. 

4.3 Results and Analysis 

The experimental results demonstrated the significant advantages of the edge-computing 
approach. The autoencoder-based anomaly detection algorithm achieved an F1-score of 0.94 
on the Z-24 Bridge dataset, indicating high reliability in distinguishing damage from 
environmental variations like temperature shifts. More importantly, the edge-based 
architecture achieved a data reduction ratio of approximately 98 percent. By transmitting 
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only feature vectors and anomaly alerts, the bandwidth consumption was negligible 
compared to the full streaming model. 

Table 1: Comparative Performance Analysis of Cloud-Centric vs. Edge-Based 
Architectures 

Metric Cloud-Centric 
Architecture 

Edge-Based 
Architecture 

Improvement 

Average Latency 450 milliseconds 25 milliseconds 94.4% Reduction 

Bandwidth Usage 
(Daily) 

14.5 Gigabytes 0.25 Gigabytes 98.2% Reduction 

Detection Accuracy 
(F1) 

0.95 0.94 -1.0% Difference 

Power Consumption 
(Node) 

High (Continuous Tx) Moderate (Bursty Tx) Optimized Profile 

The latency analysis revealed a critical improvement. The cloud-centric model suffered from 
variable latency due to network jitter, averaging 450 milliseconds, with spikes exceeding one 
second. In contrast, the edge nodes processed and flagged anomalies within 25 milliseconds 
consistent with local processing speeds. This near-instantaneous response capability is vital 
for integrating Structural Health Monitoring systems with automated traffic control or 
emergency shutdown systems [12]. The slight decrease in detection accuracy (1 percent) is a 
statistically acceptable trade-off given the substantial gains in latency and bandwidth 
efficiency. 

5. Discussion 

5.1 Implications for Real-Time Monitoring 

The findings of this study have profound implications for the future of civil infrastructure 
management. The ability to detect anomalies at the edge means that monitoring systems can 
scale to cover thousands of structures without overwhelming cellular networks or central 
storage repositories. The reduction in latency transforms Structural Health Monitoring from a 
passive diagnostic tool into an active safety system. For instance, in the event of a bridge 
collision or rapid structural failure, the edge system can trigger local alarms or traffic signals 
immediately, independent of internet connectivity. This autonomy enhances the resilience of 
the monitoring infrastructure itself, ensuring functionality even during disaster scenarios 
where communication infrastructure may be compromised. 

5.2 Challenges and Limitations 

Despite the promising results, several challenges remain. The deployment of complex 
machine learning models on battery-powered edge devices requires careful optimization to 
prevent excessive power drain. While this study utilized Raspberry Pi devices, industrial 
deployment may require even lower-power microcontrollers (TinyML), necessitating further 
model compression techniques such as quantization or pruning. Furthermore, the 
environmental durability of edge computing hardware is a concern; devices must be 
ruggedized to withstand extreme temperatures, moisture, and vibration over decades of 
service. Security is another paramount concern; as intelligence is distributed to the edge, the 
attack surface increases. Ensuring the cryptographic integrity of the code and data on 
distributed nodes is essential to prevent malicious tampering with safety-critical systems 
[13]. 
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Conclusion 

This paper presented a comprehensive framework for IoT-based real-time Structural Health 
Monitoring utilizing Edge Computing and anomaly detection algorithms. By shifting the 
computational burden from the cloud to the network edge, we addressed the critical 
bottlenecks of latency and bandwidth that hinder traditional monitoring approaches. The 
integration of unsupervised autoencoder models allowed for robust damage detection 
without the need for extensive labeled datasets of failure modes. The experimental evaluation 
confirmed that the proposed architecture significantly reduces response times and data 
transmission costs while maintaining high diagnostic accuracy. 

The transition toward edge-native Structural Health Monitoring represents a necessary 
evolution in the management of aging civil infrastructure. Future research should focus on the 
development of ultra-low-power neuromorphic hardware to further extend battery life and 
the exploration of federated learning techniques to allow edge nodes across different 
structures to share knowledge without compromising data privacy. As these technologies 
mature, they will provide engineers and asset managers with the real-time intelligence 
required to ensure the safety and longevity of the built environment. 
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