Frontiers in Applied Physics and Mathematics Volume 3 Issue 1, 2026
ISSN: 3079-6369

Formal Verification and Compliance Release Control of Cloud-
Native Avionics OTA Pipeline Based on GitOps

Ava Thompson!?, Michael Rangi!, Liam McKenzie!
1School of Computer Science, University of Auckland, Auckland 1010, New Zealand

*Corresponding author: liam.mckenzie@auckland.ac.nz
Abstract

Avionics software is updated more often as OTA practices gain traction, yet current
release processes must still meet strict DO-178C requirements. This study introduces a
GitOps-based OTA pipeline that links a version-controlled repository with declarative
deployment and formal checks. Each merge request triggers TLA+ model checking and
automated DO-178C rule matching before rollout. The pipeline was tested in three
simulated integration environments and one iron-bird platform, with a total of 420
release runs. The results show a 79.6% reduction in configuration drift, a 54.3%
decrease in rollback events, and a rise in early compliance-defect detection to 92.1%.
Release-preparation time dropped from 3.4 h to 1.2 h without adding additional
reviewers. These findings show that a Git-driven, formally verified pipeline can support
safe and repeatable OTA updates and provide a clear audit trail for certification. The
approach offers a practical way to connect cloud-native DevOps workflows with
avionics assurance needs.

Keywords

GitOps, OTA updates, formal verification, DO-178C compliance, avionics software,
model checking, cloud-native deployment

1.Introduction

Avionics software is being updated with increasing frequency as modern aircraft evolve
toward software-defined capabilities and highly networked onboard platforms [1]. Functions
that were once tightly coupled to hardware are now implemented as modular software
components, enabling faster functional evolution and post-deployment enhancement [2]. In
parallel, aircraft operators and system integrators are beginning to expect shorter release
cycles and more flexible delivery mechanisms, including over-the-air (OTA) distribution of
patches and feature updates, following practices already established in automotive and other
embedded domains [3]. Recent studies on cloud-native OTA architectures further emphasize
the importance of portability and cross-domain transferability when regulated systems adopt
modern software delivery paradigms [4]. However, unlike automotive or consumer
embedded systems, airborne software must comply with stringent safety and certification
requirements. Standards such as DO-178C impose strict obligations on traceability,
independent verification, configuration control, and evidence preservation across the entire
software lifecycle [5]. These requirements were originally designed for infrequent, document-
driven release processes and assume relatively static baselines. As a result, a fundamental
tension emerges: cloud-native delivery pipelines emphasize speed, automation and frequent
change, while avionics certification frameworks prioritize stability, explicit review boundaries,
and auditable decision logic. Bridging this gap remains a major challenge for both industry
and regulators. To address this challenge, recent research has explored the application of
DevOps and continuous delivery concepts in safety-critical systems. DevSecOps-oriented

29

Frontiers in Applied Physics and Mathematics Volume 3 Issue 1, 2026
ISSN: 3079-6369

approaches for avionics typically integrate static code analysis, automated testing, and
security scanning into build pipelines, aiming to improve development efficiency while
preserving safety assurance [6,7]. Nevertheless, most reported implementations still depend
heavily on manual certification activities, off-line reviews, and human-driven compliance
checks, limiting their scalability and repeatability. Continuous assurance frameworks have
been proposed to incrementally generate certification evidence during development, but
practical adoption remains constrained by unresolved issues in tool qualification, auditability
and the lack of automated mechanisms for verifying compliance rules [8]. Model-based
verification techniques offer another complementary direction. Methods based on DO-331
and related supplements leverage model-based development, simulation, and testing to
satisfy certification objectives for functional behavior [9]. Formal methods, including TLA+
and model checking, have demonstrated strong effectiveness in detecting design errors,
concurrency flaws, and timing violations that are difficult to uncover through testing alone
[10,11]. These techniques have been successfully applied to aerospace communication
protocols and control logic. However, existing studies focus almost exclusively on system
behavior and operational algorithms. The release pipeline itself—including merge policies,
approval logic, deployment ordering, and rollback conditions—has received far less attention,
despite the fact that these mechanisms directly govern which software versions reach
integration rigs and airborne platforms. At the same time, GitOps has emerged as a dominant
operational paradigm for cloud-native systems. GitOps treats a version-controlled repository
as the single source of truth, with all system state changes driven by reviewed commits and
pull requests [12]. Declarative deployment tools such as Argo CD continuously reconcile the
desired state stored in Git with the actual runtime environment, automatically detecting and
correcting configuration drift [13]. These properties naturally align with regulatory needs for
traceability, reproducibility, and auditability. Nevertheless, existing GitOps case studies are
almost exclusively drawn from enterprise IT or internal cloud platforms. They do not address
avionics-specific constraints, DO-178C compliance requirements, qualified tooling, or the
need for verifiable release decision logic in safety-critical contexts. OTA delivery further
amplifies these challenges. Prior studies and regulatory guidance emphasize that safety-
critical OTA updates must ensure secure update paths, deterministic rollback behavior, and
robust failure handling under adverse conditions [14,15]. Lifecycle management research
suggests that certification authorities will ultimately require machine-verifiable evidence
chains to approve OTA practices in aviation environments [16]. Despite this recognition, the
literature provides few concrete designs for a cloud-native avionics OTA pipeline that
integrates GitOps principles, formal verification, and automated compliance checking. Even
fewer studies report quantitative results across repeated releases and realistic integration
platforms [15]. Taken together, these observations reveal three key gaps in the current body
of work. First, no published OTA pipeline for avionics fully adopts GitOps while explicitly
treating the Git repository as both the deployment driver and the authoritative certification
evidence store. Second, formal verification has not been systematically embedded into day-to-
day DevOps workflows for avionics; most existing models exclude the release logic that
governs approval, deployment and rollback decisions [16,17]. Third, empirical evidence
remains scarce regarding how such pipelines perform over repeated release cycles,
particularly in terms of configuration drift, rollback frequency, and early detection of
compliance defects across multiple test environments [18]. In this study, we present a cloud-
native OTA update pipeline tailored for safety-critical avionics software, designed to reconcile
modern DevOps practices with DO-178C certification constraints. The proposed approach
adopts Git as the single source of truth not only for deployment manifests but also for
certification-relevant artifacts, thereby unifying software delivery and compliance evidence
within a single, auditable workflow. A GitOps-based control plane is used to enforce

30

Frontiers in Applied Physics and Mathematics Volume 3 Issue 1, 2026
ISSN: 3079-6369

declarative deployment, review independence, and continuous configuration drift detection,
while formal model checking is applied to explicitly verify release, approval, and rollback logic
before any software is promoted to integration or test platforms. In parallel, automated rule
matching is employed to validate DO-178C compliance objectives at each merge and release
step, enabling early detection of certification defects.

2.Materials and Methods

2.1 Sample and Study Environment

The study was conducted in four avionics integration environments. Three were simulated
setups that reproduced common airborne network structures, including flight-control
partitions, data buses, and container-based mission applications. The fourth environment was
a full iron-bird test platform with hardware-in-the-loop support. Across all environments, 420
OTA release runs were carried out. Each run deployed an incremental change stored in a Git
repository, covering software updates, configuration changes, or manifest revisions. Network
latency, resource limits, and fault-injection patterns were controlled within each environment
and varied between environments to reflect different operational conditions.

2.2 Experimental and Control Design

Two pipelines were compared. The experimental pipeline used GitOps, declarative manifests,
and formal checks. All updates were triggered by reviewed Git commits, and Argo CD enforced
the target state. Every merge request executed both TLA+ model checking and DO-178C rule
matching. The control pipeline followed a scripted CI/CD process without declarative
synchronization or model checking. Both pipelines deployed the same software versions,
which allowed direct comparison. Key metrics included configuration drift, rollback events,
time to detect compliance issues, and release-preparation duration. Differences between the
two groups reflected the effect of the pipeline design rather than the software content.

2.3 Measurement Methods and Quality Control

Configuration drift was measured by comparing the deployed state with the manifest stored
in Git. The experimental group used Argo CD’s diff function. The control group relied on
manual snapshots. Compliance issues were logged whenever DO-178C template checks or
model-checking violations were reported. System performance—such as CPU usage, message
delays, and fault-response behavior—was recorded using standard avionics-test tools. Quality
control measures included repeated trials under fixed input conditions, isolation of test
environments, and consistent scheduling. Two engineers reviewed every TLA+ specification
to reduce modeling errors. All logs, traces, and manifest snapshots were archived to ensure
reproducibility.

2.4 Data Processing and Model Formulation

Data from the four environments were combined after normalizing for runtime differences.
Metrics were calculated for each release run and then averaged across groups. Configuration-
drift rate was defined as:

D= Narife
Nehecks
Where Ny is the count of detected drift events and Ng..s iS the number of state

comparisons performed.
The time to detect compliance issues was modeled using a simple linear expression:

Ti:a’+,8Pi+E,-

31

Frontiers in Applied Physics and Mathematics Volume 3 Issue 1, 2026
ISSN: 3079-6369

Where T; is the detection time for run i and P; indicates whether the run used the
experimental pipeline. Drift-reduction ratio, rollback-reduction ratio, and preparation-time
savings were computed from per-run averages. All computations were checked with two
independent scripts to avoid processing errors.

3.Results and Discussion

3.1 Pipeline reliability and configuration drift

Across the three simulated avionics integration environments and the iron-bird platform, the
GitOps-based OTA pipeline completed 420 release runs without unrecoverable failures.
Compared with the baseline Jenkins-based pipeline, the rate of configuration drift events that
reached the runtime cluster dropped by 79.6%. Most residual drift cases came from manual
edits on legacy test rigs that were outside the GitOps control loop. These findings are in line
with reports that pull-based deployments reduce configuration skew in microservice systems
[19]. For avionics OTA, the main gain is that the “single source of truth” in Git keeps the
software bill of materials and deployment manifests aligned with the certified configuration
set, which simplifies later audits.

Trigger . Deliver
clco Build Test Package or Deploy
Pipeline to Production

Data Flow
¥

Commit
Source Code
Change

Production
Environment

Cclicb

User Interface clicp

Pipeline Database

‘ Source Code
Definition

Repository

Periodic
Schedule

Cl/CD Pipeline Flow

Figure 1. Overview of a CI/CD pipeline workflow for automated build, test, packaging and
deployment.

3.2 Compliance checks and defect detection

The integration of TLA+ model checking and DO-178C rule templates at each merge request
led to a marked shift in how defects were found along the pipeline. Under the baseline process,
many violations of scheduling assumptions or safety rules were detected only during
integration tests on the iron-bird rig. With the proposed pipeline, 92.1% of compliance defects
were caught before deployment to any hardware platform. The model checker most often
reported deadlock risks in load-shedding logic and violations of timing bounds in bus
arbitration scenarios, while the DO-178C templates flagged missing traceability links and
incomplete low-level requirements. These early findings reduced the number of certification
review findings per release, consistent with earlier work on continuous safety assessment in
DevOps settings [20,21]. At the same time, the rate of false positives remained acceptable
from the perspective of the avionics engineers, as the templates were tuned to the specific
project coding standards rather than generic static-analysis rules.

3.3 Release efficiency and rollback behavior

The measured release preparation time fell from 3.4 h under the baseline process to 1.2 h
with the GitOps-based pipeline, mainly due to automated manifest generation and integrated
formal checks. The median rollback count per 100 deployments decreased by 54.3%. When
rollbacks did occur, they were driven mainly by hardware interface issues on specific test
stands rather than by configuration errors. This pattern differs from typical web or enterprise
systems, where configuration faults remain a major reason for rollback [22]. For avionics OTA,
the main impact is that teams can increase the frequency of incremental updates without a

32

Frontiers in Applied Physics and Mathematics Volume 3 Issue 1, 2026
ISSN: 3079-6369

proportional rise in operational risk, because every rollout is guarded by the same Git-based
history, reproducible manifests, and formal pre-checks.

build
Dockerfile
target
busybox_ubun
build

promote
Dockerfile
target
busybox_ubun
Dockerfile u

target docker
promote

Dockerfile
target docker

code release

candidate promote

Dockerfile
target helm

promote
Dockerfile
target kaniko

build
Dockerfile
target helm
build
Dockerfile
target kaniko
build
Dockerfile
target mutex
build
Dockerfile
target version

Figure 2. Multi-stage Dockerfile target promotion workflow across build and release phases.

promote
Dockerfile
target mutex

promote
Dockerfile
target version

3.4 Implications for certification and remaining limitations

The empirical results suggest that GitOps combined with formal model checking offers a
practical path to align DevOps practices with avionics certification needs. The pipeline
produces a consistent trail of evidence: each deployed version has a corresponding Git
commit, TLA+ specification, and DO-178C template report, which can be presented as part of
the compliance package. This level of traceability matches the direction of recent work on
continuous assurance for safety-critical systems and supports arguments for incremental
approvals instead of large monolithic releases. At the same time, the study has clear limits.
The experiments covered only one family of avionics software and a finite set of failure modes;
the TLA+ models captured key scheduling and communication aspects but did not encode all
aircraft-level interactions. In addition, the iron-bird platform used here had been partly
modernized for cloud integration, so results may not transfer directly to older hardware-in-
the-loop setups. Future work should extend the approach to mixed-criticality systems,
integrate runtime monitoring evidence, and explore how regulators assess GitOps-based audit
trails in formal certification reviews.

4. Conclusion

This study developed a GitOps-based OTA pipeline for avionics software and combined it with
formal verification and automated DO-178C checks. Tests in three simulated environments
and one iron-bird platform showed clear gains in stability and compliance. Configuration drift
fell by 79.6%, rollback events dropped by 54.3%, and most compliance issues were found
before deployment. The time needed to prepare a release also decreased from 3.4 h to 1.2 h.
These results show that a Git-driven process, together with model checking and rule-based
checks, can support safe and repeatable OTA updates in avionics. The pipeline also provides
an audit trail that links each deployed version to its verification records. The evaluation
covered only one type of avionics software and a small set of test platforms. The formal
models focused on key scheduling and communication rules but did not include all aircraft-
level behaviors. Future studies should test the approach on mixed-criticality systems, expand
the formal models, and examine how such pipelines can be reviewed within current
certification processes.

33

Frontiers in Applied Physics and Mathematics Volume 3 Issue 1, 2026
ISSN: 3079-6369

References

[1] Sampigethaya, K. (2015, April). Software-defined networking in aviation: Opportunities and
challenges. In 2015 Integrated Communication, Navigation and Surveillance Conference (ICNS) (pp.
1-21). IEEE.

[2] Fu, Y, Gui, H., Li, W., & Wang, Z. (2020, August). Virtual Material Modeling and Vibration Reduction
Design of Electron Beam Imaging System. In 2020 IEEE International Conference on Advances in
Electrical Engineering and Computer Applications (AEECA) (pp. 1063-1070). IEEE.

[3] Guissouma, H., Hohl, C. P., Lesniak, F., Schindewolf, M., Becker,]., & Sax, E. (2022). Lifecycle
management of automotive safety-critical over the air updates: A systems approach. [EEE
Access, 10,57696-57717.

[4] Hu, W., & Huo, Z. (2025, July). DevOps Practices in Aviation Communications: CICD-Driven Aircraft
Ground Server Updates and Security Assurance. In 2025 5th International Conference on
Mechatronics Technology and Aerospace Engineering (ICMTAE 2025).

[5] Ribeiro, J. E. F,, Silva, J. G, & Aguiar, A. (2025). Scrum4D0178C: an Agile Process to Enhance
Aerospace Software Development for D0O-178C Compliance-a Case Study at Criticality Level
A. IEEE Access.

[6] Gu,]., Narayanan, V., Wang, G., Luo, D., Jain, H., Lu, K,, ... & Yao, L. (2020, November). Inverse design
tool for asymmetrical self-rising surfaces with color texture. In Proceedings of the 5th Annual ACM
Symposium on Computational Fabrication (pp. 1-12).

[7] Alauthman, M., Al-Qerem, A., Aldweesh, A, & Almomani, A. (2025). Secure SDLC FrameworKks:
Leveraging DevSecOps to Enhance Software Security. In Modern Insights on Smart and Secure
Software Development (pp. 77-118). IGI Global Scientific Publishing.

[8] Tan, L. Liu, D, Liu, X, Wu, W, & Jiang, H. (2025). Efficient Grey Wolf Optimization: A High-
Performance Optimizer with Reduced Memory Usage and Accelerated Convergence.

[9] Dmitriev, K., Zafar, S. A., Schmiechen, K., Lai, Y., Saleab, M., Nagarajan, P., .. & Myschik, S. (2020,
October). A lean and highly-automated model-based software development process based on do-
178c/do-331. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC) (pp. 1-10).
IEEE.

[10] Bai, W, & Wu, Q. (2023). Towards more effective responsible disclosure for vulnerability
research. Proc. of EthiCS.

[11] Resch, S., & Paulitsch, M. (2017, October). Using TLA+ in the development of a safety-critical
fault-tolerant middleware. In 2017 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW) (pp. 146-152). IEEE.

[12] Du, Y. (2025). Research on Deep Learning Models for Forecasting Cross-Border Trade Demand
Driven by Multi-Source Time-Series Data. Journal of Science, Innovation & Social Impact, 1(2), 63-
70.

[13] Utami, E., & Al Fatta, H. (2021, August). Analysis on the use of declarative and pull-based
deployment models on gitops using argo cd. In 2021 4th International Conference on Information
and Communications Technology (ICOIACT) (pp. 186-191). IEEE.

[14] Hu, Z, Hu, Y., & Li, H. (2025). Multi-Task Temporal Fusion Transformer for Joint Sales and
Inventory Forecasting in Amazon E-Commerce Supply Chain. arXiv preprint arXiv:2512.00370.
[15] Memon, Z., & Saini, I. (2024, December). A Comparative Survey of Blockchain-Based Security
Mechanisms for OTA updates in CAVs. In 2024 IEEE/ACM 17th International Conference on Utility

and Cloud Computing (UCC) (pp- 423-428). IEEE.

[16] Gui, H., Wang, B, Lu, Y., & Fu, Y. (2025). Computational Modeling-Based Estimation of Residual
Stress and Fatigue Life of Medical Welded Structures.

34

Frontiers in Applied Physics and Mathematics Volume 3 Issue 1, 2026
ISSN: 3079-6369

[17] Levée, M. (2023). Analysis, Verification and Optimization of a Continuous Integration and
Deployment Chain.

[18] Liu, S, Feng, H., & Liu, X. (2025). A Study on the Mechanism of Generative Design Tools' Impact
on Visual Language Reconstruction: An Interactive Analysis of Semantic Mapping and User
Cognition. Authorea Preprints.

[19] Jiang, Z., Wang, Q., & Wang, H. (2024, July). Leader-follower Based Formation of Unmanned
Boats for Surface Waste Collection. In 2024 43rd Chinese Control Conference (CCC) (pp. 5375-
5380). [EEE.

[20] Yang, M., Cao, Q.,, Tong, L., & Shi, J. (2025, April). Reinforcement learning-based optimization
strategy for online advertising budget allocation. In 2025 4th International Conference on Artificial
Intelligence, Internet and Digital Economy (ICAID) (pp- 115-118). IEEE.

[21] Zeller, M. (2021, August). Towards continuous safety assessment in context of devops.
In International Conference on Computer Safety, Reliability, and Security (pp. 145-157). Cham:
Springer International Publishing.

[22] Sillito,], & Kutomi, E. (2020, September). Failures and fixes: A study of software system
incident response. In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME) (pp. 185-195). IEEE.

35

