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Abstract 

Avionics software is updated more often as OTA practices gain traction, yet current 
release processes must still meet strict DO-178C requirements. This study introduces a 
GitOps-based OTA pipeline that links a version-controlled repository with declarative 
deployment and formal checks. Each merge request triggers TLA+ model checking and 
automated DO-178C rule matching before rollout. The pipeline was tested in three 
simulated integration environments and one iron-bird platform, with a total of 420 
release runs. The results show a 79.6% reduction in configuration drift, a 54.3% 
decrease in rollback events, and a rise in early compliance-defect detection to 92.1%. 
Release-preparation time dropped from 3.4 h to 1.2 h without adding additional 
reviewers. These findings show that a Git-driven, formally verified pipeline can support 
safe and repeatable OTA updates and provide a clear audit trail for certification. The 
approach offers a practical way to connect cloud-native DevOps workflows with 
avionics assurance needs. 
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1.Introduction 

Avionics software is being updated with increasing frequency as modern aircraft evolve 
toward software-defined capabilities and highly networked onboard platforms [1]. Functions 
that were once tightly coupled to hardware are now implemented as modular software 
components, enabling faster functional evolution and post-deployment enhancement [2]. In 
parallel, aircraft operators and system integrators are beginning to expect shorter release 
cycles and more flexible delivery mechanisms, including over-the-air (OTA) distribution of 
patches and feature updates, following practices already established in automotive and other 
embedded domains [3]. Recent studies on cloud-native OTA architectures further emphasize 
the importance of portability and cross-domain transferability when regulated systems adopt 
modern software delivery paradigms [4]. However, unlike automotive or consumer 
embedded systems, airborne software must comply with stringent safety and certification 
requirements. Standards such as DO-178C impose strict obligations on traceability, 
independent verification, configuration control, and evidence preservation across the entire 
software lifecycle [5]. These requirements were originally designed for infrequent, document-
driven release processes and assume relatively static baselines. As a result, a fundamental 
tension emerges: cloud-native delivery pipelines emphasize speed, automation and frequent 
change, while avionics certification frameworks prioritize stability, explicit review boundaries, 
and auditable decision logic. Bridging this gap remains a major challenge for both industry 
and regulators. To address this challenge, recent research has explored the application of 
DevOps and continuous delivery concepts in safety-critical systems. DevSecOps-oriented 
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approaches for avionics typically integrate static code analysis, automated testing, and 
security scanning into build pipelines, aiming to improve development efficiency while 
preserving safety assurance [6,7]. Nevertheless, most reported implementations still depend 
heavily on manual certification activities, off-line reviews, and human-driven compliance 
checks, limiting their scalability and repeatability. Continuous assurance frameworks have 
been proposed to incrementally generate certification evidence during development, but 
practical adoption remains constrained by unresolved issues in tool qualification, auditability 
and the lack of automated mechanisms for verifying compliance rules [8]. Model-based 
verification techniques offer another complementary direction. Methods based on DO-331 
and related supplements leverage model-based development, simulation, and testing to 
satisfy certification objectives for functional behavior [9]. Formal methods, including TLA+ 
and model checking, have demonstrated strong effectiveness in detecting design errors, 
concurrency flaws, and timing violations that are difficult to uncover through testing alone 
[10,11]. These techniques have been successfully applied to aerospace communication 
protocols and control logic. However, existing studies focus almost exclusively on system 
behavior and operational algorithms. The release pipeline itself—including merge policies, 
approval logic, deployment ordering, and rollback conditions—has received far less attention, 
despite the fact that these mechanisms directly govern which software versions reach 
integration rigs and airborne platforms. At the same time, GitOps has emerged as a dominant 
operational paradigm for cloud-native systems. GitOps treats a version-controlled repository 
as the single source of truth, with all system state changes driven by reviewed commits and 
pull requests [12]. Declarative deployment tools such as Argo CD continuously reconcile the 
desired state stored in Git with the actual runtime environment, automatically detecting and 
correcting configuration drift [13]. These properties naturally align with regulatory needs for 
traceability, reproducibility, and auditability. Nevertheless, existing GitOps case studies are 
almost exclusively drawn from enterprise IT or internal cloud platforms. They do not address 
avionics-specific constraints, DO-178C compliance requirements, qualified tooling, or the 
need for verifiable release decision logic in safety-critical contexts. OTA delivery further 
amplifies these challenges. Prior studies and regulatory guidance emphasize that safety-
critical OTA updates must ensure secure update paths, deterministic rollback behavior, and 
robust failure handling under adverse conditions [14,15]. Lifecycle management research 
suggests that certification authorities will ultimately require machine-verifiable evidence 
chains to approve OTA practices in aviation environments [16]. Despite this recognition, the 
literature provides few concrete designs for a cloud-native avionics OTA pipeline that 
integrates GitOps principles, formal verification, and automated compliance checking. Even 
fewer studies report quantitative results across repeated releases and realistic integration 
platforms [15]. Taken together, these observations reveal three key gaps in the current body 
of work. First, no published OTA pipeline for avionics fully adopts GitOps while explicitly 
treating the Git repository as both the deployment driver and the authoritative certification 
evidence store. Second, formal verification has not been systematically embedded into day-to-
day DevOps workflows for avionics; most existing models exclude the release logic that 
governs approval, deployment and rollback decisions [16,17]. Third, empirical evidence 
remains scarce regarding how such pipelines perform over repeated release cycles, 
particularly in terms of configuration drift, rollback frequency, and early detection of 
compliance defects across multiple test environments [18].  In this study, we present a cloud-
native OTA update pipeline tailored for safety-critical avionics software, designed to reconcile 
modern DevOps practices with DO-178C certification constraints. The proposed approach 
adopts Git as the single source of truth not only for deployment manifests but also for 
certification-relevant artifacts, thereby unifying software delivery and compliance evidence 
within a single, auditable workflow. A GitOps-based control plane is used to enforce 
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declarative deployment, review independence, and continuous configuration drift detection, 
while formal model checking is applied to explicitly verify release, approval, and rollback logic 
before any software is promoted to integration or test platforms. In parallel, automated rule 
matching is employed to validate DO-178C compliance objectives at each merge and release 
step, enabling early detection of certification defects. 

2.Materials and Methods 

2.1 Sample and Study Environment 

The study was conducted in four avionics integration environments. Three were simulated 
setups that reproduced common airborne network structures, including flight-control 
partitions, data buses, and container-based mission applications. The fourth environment was 
a full iron-bird test platform with hardware-in-the-loop support. Across all environments, 420 
OTA release runs were carried out. Each run deployed an incremental change stored in a Git 
repository, covering software updates, configuration changes, or manifest revisions. Network 
latency, resource limits, and fault-injection patterns were controlled within each environment 
and varied between environments to reflect different operational conditions. 

2.2 Experimental and Control Design 

Two pipelines were compared. The experimental pipeline used GitOps, declarative manifests, 
and formal checks. All updates were triggered by reviewed Git commits, and Argo CD enforced 
the target state. Every merge request executed both TLA+ model checking and DO-178C rule 
matching. The control pipeline followed a scripted CI/CD process without declarative 
synchronization or model checking. Both pipelines deployed the same software versions, 
which allowed direct comparison. Key metrics included configuration drift, rollback events, 
time to detect compliance issues, and release-preparation duration. Differences between the 
two groups reflected the effect of the pipeline design rather than the software content. 

2.3 Measurement Methods and Quality Control 

Configuration drift was measured by comparing the deployed state with the manifest stored 
in Git. The experimental group used Argo CD’s diff function. The control group relied on 
manual snapshots. Compliance issues were logged whenever DO-178C template checks or 
model-checking violations were reported. System performance—such as CPU usage, message 
delays, and fault-response behavior—was recorded using standard avionics-test tools. Quality 
control measures included repeated trials under fixed input conditions, isolation of test 
environments, and consistent scheduling. Two engineers reviewed every TLA+ specification 
to reduce modeling errors. All logs, traces, and manifest snapshots were archived to ensure 
reproducibility. 

2.4 Data Processing and Model Formulation 

Data from the four environments were combined after normalizing for runtime differences. 
Metrics were calculated for each release run and then averaged across groups. Configuration-
drift rate was defined as: 

D=
Ndrift

Nchecks
 

Where Ndrift  is the count of detected drift events and Nchecks  is the number of state 
comparisons performed. 
The time to detect compliance issues was modeled using a simple linear expression: 

 
Ti=α+βPi+ϵi 
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Where Ti  is the detection time for run i  and Pi  indicates whether the run used the 
experimental pipeline. Drift-reduction ratio, rollback-reduction ratio, and preparation-time 
savings were computed from per-run averages. All computations were checked with two 
independent scripts to avoid processing errors. 

3.Results and Discussion 

3.1 Pipeline reliability and configuration drift 

Across the three simulated avionics integration environments and the iron-bird platform, the 
GitOps-based OTA pipeline completed 420 release runs without unrecoverable failures. 
Compared with the baseline Jenkins-based pipeline, the rate of configuration drift events that 
reached the runtime cluster dropped by 79.6%. Most residual drift cases came from manual 
edits on legacy test rigs that were outside the GitOps control loop. These findings are in line 
with reports that pull-based deployments reduce configuration skew in microservice systems 
[19]. For avionics OTA, the main gain is that the “single source of truth” in Git keeps the 
software bill of materials and deployment manifests aligned with the certified configuration 
set, which simplifies later audits. 

 

 
Figure 1. Overview of a CI/CD pipeline workflow for automated build, test, packaging and 

deployment. 

3.2 Compliance checks and defect detection 

The integration of TLA+ model checking and DO-178C rule templates at each merge request 
led to a marked shift in how defects were found along the pipeline. Under the baseline process, 
many violations of scheduling assumptions or safety rules were detected only during 
integration tests on the iron-bird rig. With the proposed pipeline, 92.1% of compliance defects 
were caught before deployment to any hardware platform. The model checker most often 
reported deadlock risks in load-shedding logic and violations of timing bounds in bus 
arbitration scenarios, while the DO-178C templates flagged missing traceability links and 
incomplete low-level requirements. These early findings reduced the number of certification 
review findings per release, consistent with earlier work on continuous safety assessment in 
DevOps settings [20,21]. At the same time, the rate of false positives remained acceptable 
from the perspective of the avionics engineers, as the templates were tuned to the specific 
project coding standards rather than generic static-analysis rules. 

3.3 Release efficiency and rollback behavior 

The measured release preparation time fell from 3.4 h under the baseline process to 1.2 h 
with the GitOps-based pipeline, mainly due to automated manifest generation and integrated 
formal checks. The median rollback count per 100 deployments decreased by 54.3%. When 
rollbacks did occur, they were driven mainly by hardware interface issues on specific test 
stands rather than by configuration errors. This pattern differs from typical web or enterprise 
systems, where configuration faults remain a major reason for rollback [22]. For avionics OTA, 
the main impact is that teams can increase the frequency of incremental updates without a 
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proportional rise in operational risk, because every rollout is guarded by the same Git-based 
history, reproducible manifests, and formal pre-checks. 

 
Figure 2. Multi-stage Dockerfile target promotion workflow across build and release phases. 

3.4 Implications for certification and remaining limitations 

The empirical results suggest that GitOps combined with formal model checking offers a 
practical path to align DevOps practices with avionics certification needs. The pipeline 
produces a consistent trail of evidence: each deployed version has a corresponding Git 
commit, TLA+ specification, and DO-178C template report, which can be presented as part of 
the compliance package. This level of traceability matches the direction of recent work on 
continuous assurance for safety-critical systems and supports arguments for incremental 
approvals instead of large monolithic releases. At the same time, the study has clear limits. 
The experiments covered only one family of avionics software and a finite set of failure modes; 
the TLA+ models captured key scheduling and communication aspects but did not encode all 
aircraft-level interactions. In addition, the iron-bird platform used here had been partly 
modernized for cloud integration, so results may not transfer directly to older hardware-in-
the-loop setups. Future work should extend the approach to mixed-criticality systems, 
integrate runtime monitoring evidence, and explore how regulators assess GitOps-based audit 
trails in formal certification reviews. 

4. Conclusion 

This study developed a GitOps-based OTA pipeline for avionics software and combined it with 
formal verification and automated DO-178C checks. Tests in three simulated environments 
and one iron-bird platform showed clear gains in stability and compliance. Configuration drift 
fell by 79.6%, rollback events dropped by 54.3%, and most compliance issues were found 
before deployment. The time needed to prepare a release also decreased from 3.4 h to 1.2 h. 
These results show that a Git-driven process, together with model checking and rule-based 
checks, can support safe and repeatable OTA updates in avionics. The pipeline also provides 
an audit trail that links each deployed version to its verification records. The evaluation 
covered only one type of avionics software and a small set of test platforms. The formal 
models focused on key scheduling and communication rules but did not include all aircraft-
level behaviors. Future studies should test the approach on mixed-criticality systems, expand 
the formal models, and examine how such pipelines can be reviewed within current 
certification processes. 
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