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Abstract

The accurate assessment of credit risk remains a cornerstone of financial stability and
profitability for lending institutions globally. As the volume of transactional data
expands and the complexity of financial behaviors increases, traditional statistical
methods such as logistic regression often fail to capture the non-linear intricacies
inherent in modern credit datasets. This paper presents a comparative analysis of two
dominant machine learning paradigms: Gradient Boosting Machines, specifically the
XGBoost implementation, and Artificial Neural Networks. Utilizing a comprehensive
dataset of consumer loans, we evaluate these models based on predictive accuracy,
computational efficiency, and interpretability. Our findings indicate that while both
methodologies significantly outperform traditional baselines, they exhibit distinct
advantages depending on the operational constraints. Gradient boosting demonstrates
superior performance on tabular data with faster training times and greater
interpretability through feature importance analysis. Conversely, neural networks
show potential for capturing highly complex, high-dimensional interactions, albeit at a
higher computational cost. The study concludes that the choice between these
algorithms should be dictated by the specific requirements of the financial institution
regarding the trade-off between predictive precision and model transparency.
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1 Introduction

The global financial ecosystem relies heavily on the ability of institutions to accurately
distinguish between solvent and insolvent borrowers. Credit scoring models serve as the
primary mechanism for this classification, directly influencing interest rates, loan approvals,
and the overall risk exposure of banks. Historically, the industry has relied on linear statistical
models, primarily logistic regression and discriminant analysis. These methods are favored
for their simplicity and the ease with which their outputs can be explained to regulators and
customers. However, the rigid assumptions of linearity and independence among variables in
these traditional models often limit their predictive power when applied to real-world data,
which is frequently characterized by complex, non-linear relationships and high
dimensionality [1].The advent of machine learning has introduced a paradigm shift in
financial risk modeling. Algorithms capable of learning from data without explicit
programming of rules have shown remarkable success in various domains, including fraud
detection and algorithmic trading. In the context of credit risk, the primary objective is to
minimize the probability of default estimation error. A reduction in classification error,
particularly false negatives where a defaulter is classified as safe, can save financial
institutions billions of dollars annually. Consequently, there is a strong imperative to explore
advanced algorithmic approaches that can exploit the vast amounts of alternative data now
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available, ranging from transaction histories to behavioral metrics.This paper focuses on two
of the most potent machine learning architectures currently employed in data science:
Gradient Boosting and Neural Networks. Gradient boosting represents an ensemble approach
that builds a strong predictive model by combining multiple weak learners, typically decision
trees, in a sequential manner. Neural networks, inspired by biological neural processing,
utilize layers of interconnected nodes to approximate complex functions. While both have
been applied in isolation, a rigorous comparative study focusing on their application to credit
risk assessment, considering both performance metrics and practical implementation
challenges, is necessary. The subsequent sections will detail the theoretical underpinnings,
methodological framework, and experimental results of this comparison.

2. Theoretical Framework

2.1 Evolution of Risk Assessment Models

Credit risk assessment has evolved from subjective expert judgment systems, often referred
to as the 5 Cs of credit (character, capacity, capital, collateral, and conditions), to quantitative
statistical scoring. The introduction of the FICO score in the late 20th century standardized
this process using logistic regression techniques. While logistic regression provides a robust
baseline and easy interpretation of coefficients, it struggles with heteroscedasticity and
multicollinearity, common features in financial datasets. As noted by recent scholarship, the
restriction to linear decision boundaries often results in underfitting when the underlying risk
factors interact in complex ways [2].The shift towards non-parametric machine learning
models was driven by the need to relax these statistical assumptions. Support Vector
Machines and Random Forests represented the first wave of this transition, offering better
handling of high-dimensional data. However, the current state-of-the-art in predictive
modeling for tabular data—which constitutes the majority of credit files—is dominated by
boosting algorithms and deep learning architectures. These models can automatically detect
feature interactions, handle missing values more gracefully, and model arbitrary decision
surfaces.

2.2 Gradient Boosting Machines

Gradient Boosting Machines (GBM) operate on the principle of boosting, an ensemble
technique that aggregates the predictions of several base estimators to improve robustness
and generalizability. Unlike bagging methods like Random Forests that build trees
independently, boosting builds trees sequentially. Each new tree attempts to correct the
errors made by the combination of all previous trees. This is achieved by fitting the new tree
to the negative gradient of the loss function with respect to the previous prediction.The
specific implementation focused on in this study is XGBoost (eXtreme Gradient Boosting). It
introduces several system optimization and algorithmic enhancements to the standard GBM
framework. Key innovations include a weighted quantile sketch for handling sparse data and
a sparsity-aware split finding algorithm. Furthermore, it incorporates regularization terms in
the objective function to control model complexity, which helps in preventing overfitting—a
critical concern in financial modeling where models must generalize well to unseen future
applicants [3]. The additive nature of the model allows it to capture complex patterns while
maintaining a degree of interpretability through metrics such as information gain and cover.

2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) offer a radically different approach to learning. Composed
of an input layer, one or more hidden layers, and an output layer, ANNs transform input data
through a series of non-linear operations. Each connection between neurons carries a weight
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that is adjusted during the training process using the backpropagation algorithm. The
inclusion of non-linear activation functions, such as the Rectified Linear Unit (ReLU) or the
sigmoid function, allows the network to approximate any continuous function, provided there
are sufficient neurons in the hidden layers [4].In the context of credit risk, Deep Neural
Networks (DNNs)—networks with multiple hidden layers—are theoretically capable of
learning hierarchical representations of borrower behavior. For instance, lower layers might
learn simple interactions between income and debt, while deeper layers could abstract these
into complex concepts of financial stability. However, the training of such networks is
computationally intensive and requires large datasets to converge to an optimal solution
without overfitting. Furthermore, the non-convex nature of the loss landscape in neural
networks means that training is stochastic, and results can vary based on initialization and
optimization strategies.

3. Methodology

3.1 Data Acquisition and Preprocessing

The empirical analysis in this study is based on a publicly available dataset of consumer loans,
comprising approximately 50,000 unique loan records. The dataset includes a binary target
variable indicating loan status (default or fully paid) and 24 independent variables ranging
from demographic information to detailed credit history. The features include numerical
variables such as annual income, debt-to-income ratio, and revolving utilization, as well as
categorical variables like employment length, home ownership status, and loan purpose.Data
preprocessing is a critical step, particularly given the distinct requirements of the two
algorithms. For the Neural Network, numerical features were standardized to have a mean of
zero and a standard deviation of one. This normalization is essential to ensure that the
optimization algorithm (stochastic gradient descent) converges efficiently and is not biased
by variables with larger magnitudes. Categorical variables were transformed using one-hot
encoding, expanding the feature space. Conversely, for the Gradient Boosting model, minimal
preprocessing was required for numerical variables as decision trees are invariant to
monotonic transformations. However, categorical variables were similarly encoded to ensure
compatibility [5].Missing values were handled through imputation. For numerical columns,
the median value was used to minimize the impact of outliers, while the mode was used for
categorical columns. To address the class imbalance inherent in credit data—where reliable
borrowers significantly outnumber defaulters—we employed the Synthetic Minority Over-
sampling Technique (SMOTE) on the training set. This technique generates synthetic
examples of the minority class (defaulters) to ensure the models learn the decision boundary
effectively without being biased toward the majority class.

3.2 Model Configuration and Training

The Gradient Boosting model was implemented using the XGBoost library. Hyperparameter
tuning was conducted using a grid search approach with 5-fold cross-validation. The key
parameters tuned included the learning rate, the maximum depth of the trees, the subsample
ratio of the training instances, and the regularization parameters (alpha and lambda). The
objective function was set to binary logistic, appropriate for the classification task.The Neural
Network was constructed as a Multi-Layer Perceptron (MLP) using a standard deep learning
framework. The architecture consisted of an input layer matching the dimension of the
processed data, three hidden layers with 64, 32, and 16 neurons respectively, and a single
output neuron with a sigmoid activation function to output a probability between 0 and 1. To
prevent overfitting, dropout layers were inserted between hidden layers, randomly
deactivating a fraction of neurons during training. The network was trained using the Adam
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optimizer, and binary cross-entropy was utilized as the loss function. Early stopping
mechanisms were implemented to halt training when validation loss ceased to improve [6].

3.3 Evaluation Metrics

Evaluating credit risk models requires metrics that go beyond simple accuracy, as the cost of
false negatives (approving a bad loan) is typically much higher than false positives (rejecting a
good loan). Therefore, in addition to Accuracy, we utilized the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), Precision, Recall, and the F1-Score. The AUC-ROC
provides an aggregate measure of performance across all possible classification thresholds
and is widely regarded as the standard metric for credit scoring [7]. Recall is particularly
scrutinized given the risk-averse nature of lending.

4. Experimental Results

4.1 Comparative Performance Analysis

The experimental results demonstrate that both machine learning models significantly
outperform the logistic regression baseline. The Gradient Boosting model achieved the
highest overall performance across most metrics. Specifically, the XGBoost implementation
yielded an AUC-ROC of 0.784, indicating a strong ability to rank borrowers by risk. The Neural
Network followed closely with an AUC-ROC of 0.762.

Table 1 presents the detailed performance metrics for the tested models on the hold-out test
set. It is observed that while the Neural Network achieved slightly higher Precision, the
Gradient Boosting model provided a better balance between Precision and Recall, as
evidenced by the higher F1-Score. The superior Recall of the Gradient Boosting model
suggests it is more effective at identifying potential defaulters, which is the primary objective
of risk management.

Table 1: Experimental Results comparing model performance metrics on the test
dataset

Model Accuracy AUC-ROC Precision Recall F1-Score

Logistic 0.724 0.695 0.680 0.540 0.602
Regression

(Baseline)

Gradient 0.815 0.784 0.765 0.710 0.736

Boosting

(XGBoost)

Neural 0.792 0.762 0.778 0.655 0.711

Network

(MLP)

The dominance of Gradient Boosting on this dataset aligns with recent literature suggesting
that tree-based ensembles often perform better on structured, tabular data compared to fully
connected neural networks [8]. Neural networks typically require vast amounts of data to
outperform ensembles on such tasks, and the feature interactions in credit data are often
well-captured by the hierarchical splitting of decision trees.
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Figure 1: ROC Curve Comparison
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Figure 1: ROC Curve Comparison

The ROC curves illustrated in Figure 1 visualize the trade-off between sensitivity and
specificity. The curve for Gradient Boosting consistently lies above that of the Neural Network
and the baseline, confirming its dominance across various threshold settings. This implies that
for any given tolerance of false alarms (rejected good loans), the Gradient Boosting model
detects a higher proportion of actual defaults.

4.2 Computational Efficiency and Stability

Beyond predictive capability, the operational feasibility of these models is determined by
their computational demands. The Gradient Boosting model demonstrated significantly faster
training times compared to the Neural Network. The sequential tree building, while iterative,
converged faster than the backpropagation epochs required for the MLP. In a production
environment, this allows for more frequent model retraining, keeping the risk assessment
aligned with the most recent economic trends.In terms of stability, the Neural Network
showed higher variance in performance across different random initializations. This
sensitivity necessitates training multiple networks and averaging their predictions
(ensembling) to achieve stable results, further increasing the computational burden. Gradient
Boosting, particularly with the deterministic nature of tree splitting algorithms (once
hyperparameters are fixed), provided more consistent results across runs [9].

5. Discussion

5.1 Interpretability and Regulatory Compliance

One of the most significant barriers to the adoption of advanced machine learning in finance is
the black box problem. Regulators often require lenders to provide specific reasons for
adverse actions (loan denials). In this domain, Gradient Boosting holds a distinct advantage
over Neural Networks. Although less transparent than logistic regression, tree-based models
offer feature importance scores that quantify the contribution of each variable to the model's
predictions.
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Figure 2: Feature Importance Analysis

Top 10 features derived from the Gradient Bousting model, indicating
their contribution to the dideieision-making process.

Debt-to-Intome Ratio
FICO Score

Annual Income -
Loan-to-Value Ratio
Credit Utilization
Employmeny Length -
Interest Rate

Loan Anount

Inquiry Count Last 6
Last 6 Months

0% 20% 40% 60% 80% 100%

Relative Importance (%)

Figure 2: Feature Importance Analysis

Figure 2 illustrates the global feature importance derived from the XGBoost model. It clearly
highlights that financial history variables such as credit utilization and inquiry counts are the
primary drivers of risk prediction. This level of transparency is difficult to extract from a deep
neural network, where information is distributed across thousands of weight parameters in a
non-linear fashion. While techniques like LIME and SHAP exist to interpret neural networks,
they add an additional layer of complexity and computational cost [10]. For a financial
institution, the ability to directly attribute a risk score to specific borrower characteristics is
invaluable for both regulatory compliance and internal strategy formulation.

5.2 The Trade-off Between Complexity and Performance

The results of this study suggest a diminishing return on model complexity for tabular credit
data. While the Neural Network is theoretically capable of modeling more complex functions,
the signal-to-noise ratio in standard credit files does not always justify the use of deep
learning. The structured nature of financial data, where features have specific, often
monotonic relationships with risk (e.g., higher income usually means lower risk), is inherently
well-suited for decision trees.However, this does not render Neural Networks obsolete in this
domain. Their strength lies in their flexibility to handle unstructured data. If the credit
assessment were to be augmented with unstructured data sources—such as text from loan
application essays, images of collateral, or raw transaction logs—the Neural Network
architecture would likely surpass Gradient Boosting due to its ability to learn feature
representations directly from raw data. In a pure tabular setting, however, the Gradient
Boosting machine represents a local optimum of performance, speed, and interpretability.

5.3 Overfitting and Generalization

Both models are prone to overfitting, a state where the model memorizes the training data
rather than learning the underlying patterns. The study addressed this through regularization
and cross-validation. It was observed that the Neural Network was more susceptible to
overfitting, particularly when the network capacity (number of neurons) was large relative to
the dataset size. The dropout technique mitigated this to an extent, but careful tuning was
required. Gradient Boosting's regularization parameters (controlling leaf weights and tree
depth) proved robust, allowing the model to generalize well even with relatively deep trees.
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This robustness is crucial in credit scoring, where the population distribution can shift over
time (population drift), and models must remain valid on future data.

6. Conclusion

This comparative study has evaluated the efficacy of Gradient Boosting Machines and Neural
Networks for credit risk assessment. The empirical evidence suggests that for standard credit
scoring tasks involving structured tabular data, Gradient Boosting (specifically XGBoost)
offers a superior combination of predictive accuracy, computational efficiency, and
interpretability. It outperformed the Neural Network in AUC-ROC and Recall metrics, trained
significantly faster, and provided clearer insights into the drivers of default risk through
feature importance measures.While Neural Networks demonstrated strong predictive power,
their computational cost and lack of transparency present challenges for deployment in highly
regulated financial environments. However, their potential utility remains high in scenarios
involving unstructured alternative data or significantly larger datasets where deep learning
architectures can exploit their capacity for feature abstraction.For financial institutions
aiming to modernize their risk infrastructure, the transition from logistic regression to
gradient boosting represents a logical and high-value step. It offers immediate performance
gains with manageable implementation complexity. Future research should focus on hybrid
approaches that combine the feature extraction capabilities of neural networks with the
decision-making robustness of gradient boosting, potentially unlocking further improvements
in risk classification accuracy [11].
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