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Abstract

High-throughput financial transaction systems constitute critical infrastructure in
modern banking and financial services, processing millions of transactions per second
while maintaining stringent requirements for reliability, consistency, and availability.
The inherent complexity of these distributed systems, characterized by intricate
interdependencies among microservices, databases, message queues, and external
interfaces, presents substantial challenges in fault diagnosis and root cause analysis.
This research proposes a novel multi-granularity dependency modeling framework
that captures system behaviors across service-level, transaction-level, and resource-
level abstractions to enable automated fault triage. The framework integrates real-time
telemetry data including metrics, distributed traces, and transaction logs to construct
dynamic dependency graphs that reflect evolving system states. A hierarchical fault
propagation model is developed to distinguish between root causes and cascading
failures, leveraging causal inference techniques and temporal correlation analysis. The
proposed approach employs machine learning-based anomaly detection coupled with
graph-based root cause localization algorithms to identify fault origins within seconds
of symptom manifestation. Experimental evaluation on a production-scale financial
transaction processing platform demonstrates that the multi-granularity approach
achieves superior diagnostic accuracy compared to single-level analysis methods,
reducing mean time to resolution by approximately 67% while maintaining a precision
rate exceeding 92% for root cause identification. The framework provides actionable
insights for automated incident response systems and contributes to the broader
discourse on reliability engineering in mission-critical financial infrastructure.
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Introduction

Modern financial institutions operate transaction processing systems of unprecedented scale
and complexity, where billions of payment transactions, securities trades, and fund transfers
flow through distributed architectures comprising hundreds of interconnected services.
These high-throughput financial transaction systems serve as the technological backbone of
global commerce, enabling real-time payment processing, cross-border remittances, stock
market operations, and digital banking services. The reliability and performance of these
systems directly impact customer experience, regulatory compliance, and financial stability,
making fault diagnosis and rapid incident resolution paramount operational concerns [1].The
architectural evolution from monolithic applications to microservices-based distributed
systems has introduced new dimensions of complexity in fault management. Contemporary
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financial transaction platforms typically consist of numerous specialized services
orchestrated through message-oriented middleware, with each transaction traversing
multiple service boundaries and data persistence layers. This architectural pattern offers
advantages in scalability, deployment flexibility, and team autonomy, but simultaneously
creates intricate dependency webs where failures in one component can propagate
unpredictably through call chains, triggering cascading effects that obscure the original fault
source [2]. The dynamic nature of cloud-native deployments, characterized by auto-scaling,
container orchestration, and continuous deployment practices, further complicates diagnostic
efforts as system topology and behavior patterns evolve continuously. Traditional approaches
to fault diagnosis in financial systems have predominantly relied on rule-based monitoring
systems and manual analysis of log files, which prove inadequate in the face of modern
complexity. Rule-based systems struggle with the explosion of potential failure scenarios and
require extensive domain knowledge to maintain, often producing excessive false alarms that
desensitize operations teams [3]. Manual log analysis becomes impractical when dealing with
petabytes of telemetry data generated across distributed components, and the temporal
nature of transient faults makes post-mortem analysis challenging. The financial services
sector faces additional constraints compared to other industries, as transaction systems must
maintain continuous availability with recovery time objectives measured in seconds, leaving
minimal tolerance for prolonged diagnostic processes [4]. The proliferation of observability
frameworks has generated rich datasets capturing system behavior through multiple
modalities, including time-series metrics, distributed tracing spans, application logs, and
business transaction records. However, existing fault localization methodologies often analyze
these data sources in isolation or fail to account for the multi-level nature of dependencies in
financial transaction systems. A database connection pool exhaustion at the infrastructure
level manifests differently than a logic error in payment validation services, yet both may
produce similar high-level symptoms such as elevated transaction latencies or timeout rates.
Distinguishing between root causes and secondary effects requires sophisticated analytical
techniques that can reason about causal relationships across system layers [5]. This research
addresses the challenge of automated fault triage in high-throughput financial transaction
systems through a multi-granularity dependency modeling framework. The core innovation
lies in simultaneously capturing and analyzing dependencies at multiple levels of abstraction,
from coarse-grained service interactions to fine-grained resource consumption patterns,
enabling more accurate fault localization compared to flat dependency models. The proposed
approach constructs dynamic dependency graphs that reflect real-time system states,
incorporating temporal evolution patterns and contextual information specific to financial
transaction processing. A hierarchical fault propagation model distinguishes between primary
fault sources and downstream manifestations, leveraging techniques from causal inference to
establish directional relationships between observed anomalies [6]. The framework
integrates machine learning-based anomaly detection algorithms that learn normal behavior
patterns from historical telemetry data, enabling automatic identification of deviations
indicative of system faults. Upon anomaly detection, graph-based root cause localization
algorithms traverse the multi-granularity dependency model to identify candidate fault
sources, ranking them by likelihood scores derived from correlation analysis and domain-
specific heuristics. The system generates diagnostic reports that highlight suspicious
components along with supporting evidence, reducing the cognitive burden on incident
responders and accelerating resolution workflows. Experimental validation demonstrates
substantial improvements in diagnostic accuracy and response time compared to baseline
approaches, with implications for automated remediation systems and self-healing
architectures [7]. Financial transaction systems present unique requirements that distinguish
this problem domain from general distributed systems diagnosis. Transaction semantics
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require maintaining ACID (Atomicity, Consistency, Isolation, Durability) properties across
distributed operations, with complex compensation logic for partial failures. Regulatory
compliance mandates comprehensive audit trails and explainable decision-making processes,
constraining the adoption of purely black-box machine learning techniques. Performance
requirements demand sub-second response times for diagnostic systems to enable proactive
intervention before customer-visible impacts occur. The proposed framework addresses
these domain-specific considerations through specialized dependency relationship types,
transaction-aware anomaly detection, and interpretable root cause ranking mechanisms [8].
The contributions of this research extend beyond immediate practical applications in financial
services operations. The multi-granularity modeling approach offers insights applicable to
other domains characterized by layered architectures and complex failure modes, including
telecommunications networks, e-commerce platforms, and healthcare information systems.
The integration of multiple observability signals through unified dependency models
represents a methodological advance in distributed systems diagnosis, while the focus on
automation aligns with broader industry trends toward AlOps (Artificial Intelligence for IT
Operations) and autonomous system management. By demonstrating measurable
improvements in fault triage efficiency, this work provides empirical support for investment
in advanced diagnostic capabilities as a critical component of operational resilience strategies

[9].
2. Literature Review

The problem of fault diagnosis in distributed systems has attracted substantial research
attention over the past decade, with methodologies evolving from simple threshold-based
alerting to sophisticated machine learning approaches. Early work in this domain focused on
dependency modeling through static architectural analysis, constructing call graphs from
source code inspection or deployment manifests. These approaches provided useful
visualizations of system structure but failed to capture runtime behaviors and dynamic
dependencies that emerge under production workloads [10]. The recognition that static
models inadequately represent real-world complexity motivated research into dynamic
dependency discovery techniques that observe actual system interactions through
instrumentation and monitoring. Several research efforts have explored fault injection-based
approaches to characterize dependencies in distributed environments. These methodologies
systematically perturb system components while monitoring ripple effects across dependent
services, building probabilistic models of failure propagation paths [11]. While valuable for
understanding system resilience characteristics, fault injection techniques face practical
limitations in production financial systems where controlled disruptions risk customer
impact and regulatory violations. Additionally, the combinatorial explosion of possible failure
scenarios in large-scale systems makes exhaustive fault injection campaigns computationally
prohibitive, necessitating sampling strategies that may miss critical dependency patterns.
Graph-based representations have emerged as a prominent paradigm for modeling service
dependencies and supporting root cause analysis, including recent diffusion-based models
designed for large-scale payment service systems [12]. Researchers have demonstrated that
constructing directed graphs where nodes represent services and edges capture call
relationships enables the application of graph algorithms for fault localization. PageRank
adaptations have been proposed to rank suspect components based on anomaly propagation
patterns, while shortest path algorithms identify likely transmission routes for cascading
failures [13]. These graph-based methods benefit from computational efficiency and intuitive
interpretability but typically operate at a single level of abstraction, missing opportunities to
correlate symptoms across architectural layers. The integration of machine learning
techniques into fault diagnosis represents a significant methodological shift from rule-based
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approaches. Supervised learning models trained on historical failure data have shown
promise in predicting fault types from symptom patterns, achieving classification accuracies
exceeding 85% in controlled experiments [14]. However, the requirement for labeled training
data poses challenges in practice, as many production systems lack comprehensive failure
taxonomies or experience long-tail distributions of rare fault modes. Unsupervised anomaly
detection methods address this limitation by learning normal behavior models without
explicit labels, employing techniques ranging from statistical outlier detection to deep neural
networks [15]. Trace-based root cause analysis leverages distributed tracing frameworks that
instrument request flows across service boundaries, generating detailed records of execution
paths and timing information. By analyzing latency distributions and error rates aggregated
over trace spans, researchers have developed algorithms to pinpoint services contributing to
performance degradations [16]. The TraceRCA methodology constructs trace-level
dependency graphs and applies anomaly scoring functions to identify problematic spans,
demonstrating effectiveness in microservices environments. However, trace-based
approaches incur overhead from instrumentation and may struggle with partial observability
when legacy components lack tracing integration [17]. Recent work has emphasized multi-
modal approaches that combine metrics, traces, and logs to achieve more comprehensive
diagnostic coverage. The recognition that different fault types manifest distinctly across
observability signals motivates hybrid frameworks that cross-reference evidence from
multiple sources [18]. For instance, a resource exhaustion fault may appear primarily in
metrics data, while a logic error becomes evident through log message patterns. The challenge
lies in correlating these heterogeneous data streams and resolving conflicting signals, which
requires sophisticated data fusion techniques and attention mechanisms to weight evidence
appropriately [19]. Causal inference methods borrowed from statistics and epidemiology
have recently been applied to distributed systems diagnosis, offering rigorous frameworks for
distinguishing correlation from causation. These approaches construct structural causal
models that encode assumptions about system behavior and use observational or
interventional data to infer causal relationships between variables [20]. The application of
causal discovery algorithms, such as constraint-based methods and score-based structure
learning, shows potential for automatically learning dependency structures from telemetry
data. However, causal inference typically assumes data generating processes that may not
hold in complex software systems, and violations of assumptions can lead to incorrect
conclusions [21]. The financial services domain imposes unique constraints that differentiate
fault diagnosis requirements from other application areas. The criticality of transaction
integrity necessitates diagnostic approaches that respect transactional boundaries and
account for compensating transaction semantics. Research specifically targeting financial
transaction systems has investigated techniques for tracing fault impacts across transaction
lifecycles and correlating business-level metrics with technical indicators [22]. Regulatory
requirements for auditability and explainability favor interpretable models over black-box
approaches, influencing the adoption trajectory of deep learning techniques in this sector [23].
Domain-specific knowledge has been shown to enhance diagnostic accuracy when
incorporated into fault localization algorithms. Several studies demonstrate that encoding
expert insights about common failure modes, known problematic dependencies, or criticality
rankings improves performance over purely data-driven methods [24]. The challenge lies in
capturing and maintaining this domain knowledge in machine-readable form, particularly as
systems evolve and historical patterns become obsolete. Hybrid approaches that combine
learned models with expert rules represent a pragmatic middle ground, though they
introduce complexity in managing the interplay between these knowledge sources [25].
Temporal dependency modeling has received increased attention as researchers recognize
that dependency relationships evolve over time due to auto-scaling, deployment changes, and

77



Frontiers in Business and Finance Volume 3 Issue 1, 2026
ISSN: 3079-9325

shifting workload patterns. Static dependency models quickly become stale in dynamic cloud
environments, potentially misleading diagnostic algorithms [26]. Techniques for continuously
updating dependency graphs based on recent observability data address this limitation,
employing sliding window approaches or decay functions to balance historical patterns with
current observations. The computational cost of maintaining real-time dependency models at
scale remains an open challenge, particularly for systems with thousands of components
generating telemetry at high frequencies [27].The application of hierarchical modeling to
capture multi-level dependencies represents an emerging research direction with limited
prior work specific to financial systems. Existing hierarchical approaches in other domains
have demonstrated benefits in managing complexity and focusing diagnostic efforts on
relevant subsystems [28]. The hierarchical causality graph concept introduced by Hu et al. in
their Causelnfer system provides a foundational framework for two-layer dependency
modeling, separating service-level dependencies from metric-level causal relationships [29].
Their approach achieves 80% precision in identifying root causes within the top two ranked
candidates, demonstrating the value of hierarchical abstraction in distributed system
diagnosis. However, adaptation to financial transaction processing domains requires
extensions to handle transaction-specific semantics and regulatory constraints that were not
addressed in general-purpose distributed systems research.

3. Methodology

The proposed multi-granularity dependency modeling framework employs a hierarchical
architecture that captures fault propagation patterns across multiple levels of system
abstraction. This methodology section describes the technical approach for constructing
dynamic dependency graphs, detecting anomalies, and localizing root causes in high-
throughput financial transaction systems.

3.1 Hierarchical Dependency Graph Construction

The foundation of the diagnostic framework rests upon a two-layer hierarchical dependency
model that explicitly represents both service-level interactions and resource-level
dependencies within financial transaction processing infrastructure. This hierarchical
structure addresses the fundamental challenge that faults manifest differently across
architectural layers, requiring distinct analytical techniques to identify propagation patterns
at each granularity level. The upper layer captures coarse-grained dependencies between
microservices, message queues, and external integration points through which business
transactions flow, while the lower layer models fine-grained relationships between resource
consumption metrics, infrastructure components, and physical deployment topology.As
shown in Figure 1, construction of the service-level dependency graph begins with passive
observation of network traffic patterns using lightweight packet capture mechanisms that do
not require source code instrumentation. The system employs socket monitoring capabilities
exposed through modern operating systems to identify communication channels between
service instances without introducing performance overhead associated with distributed
tracing agents. Each observed service interaction generates a directed edge in the dependency
graph, weighted by request frequency and average latency measurements collected during a
configurable observation window. This dynamic discovery approach ensures the dependency
model reflects actual runtime behavior rather than design-time assumptions, accommodating
scenarios where service interactions deviate from architectural documentation due to
configuration changes or emergent communication patterns.
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Figure 1: Two-layer hierarchical causality graph architecture showing service-level

dependencies (upper layer) and physical infrastructure topology (lower layer)
The resource-level dependency layer models relationships between infrastructure metrics
and component health indicators, establishing causal connections that explain how low-level
resource contention manifests as high-level service degradation. Construction of this layer
applies statistical causal discovery algorithms based on conditional independence testing to
identify directional dependencies among time-series metrics including CPU utilization,
memory consumption, disk input-output rates, network bandwidth utilization, and
application-specific performance counters. The framework implements the PC algorithm with
modifications to handle high-dimensional metric spaces and temporal autocorrelation
characteristics inherent in monitoring data. Each identified causal relationship receives a
confidence score derived from statistical hypothesis testing, enabling the diagnostic engine to
distinguish strong dependencies from spurious correlations that may arise from confounding
factors or measurement artifacts. Integration between the two hierarchical layers occurs
through mapping functions that associate resource-level anomalies with corresponding
service-level manifestations. These mappings encode domain knowledge about how specific
resource exhaustion scenarios impact transaction processing capabilities, creating bridges
between infrastructure-level root causes and observable service-level symptoms. For instance,
database connection pool exhaustion at the resource layer maps to elevated response times
and increased error rates at the payment validation service layer. The framework maintains a
knowledge base of such mappings derived from historical incident data and expert
annotations, continuously updating these associations as new fault patterns emerge in
production environments.

3.2 Multi-Granularity Fault Propagation Modeling

Accurate fault diagnosis requires distinguishing between primary fault sources and secondary
failures that result from cascading effects propagating through dependency chains. The
framework implements a fault mapping taxonomy that classifies observable symptoms into
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hierarchical categories reflecting their position in the causal chain from root cause to user-
visible impact. As shown in Figure 2, this taxonomy spans three conceptual levels: high-level
observable faults that manifest as business transaction failures or service level objective
violations, resource-level faults that indicate infrastructure component anomalies, and low-
level fault injection points that represent underlying causal mechanisms such as hardware
failures or software defects.

Observable Fault Table

High Level Fault Possible Sources
Access Denied Key Server, Database Server
Data not found Database Server
Performance Degradation Application Server, Database
Servert_,..-—-'""\
- - N
- - \\
== Resource Fault Table M
Resource Possible Lower Level Faults
Database Server Lock contention, Buffer Size
Problem, .........
Application Server Servelet Error, Application
__|Graslr =~ T~
A = . <3
- Fault Injector Table S,
Resource Fault Low Level Fault Injectors
Application Crash Process Crash, Memory
Corruption

Figure 2: Multi-level fault mapping taxonomy
The fault propagation model employs directed acyclic graph traversal algorithms to trace
anomaly propagation paths from detected symptoms backward toward probable root causes.
When an anomaly detection module flags a service instance as exhibiting abnormal behavior,
the diagnostic engine initiates a breadth-first search through the dependency graph in reverse
topological order, identifying all upstream dependencies that could have contributed to the
observed anomaly. Each candidate root cause receives a suspicion score computed through
Bayesian inference that combines prior probability distributions derived from historical
failure frequencies with likelihood functions based on observed correlation strengths
between upstream and downstream metrics during the current incident.The scoring
mechanism accounts for temporal propagation delays that occur as faults cascade through
multi-tier architectures, recognizing that downstream symptoms may lag behind upstream
root causes by intervals ranging from milliseconds to minutes depending on system buffering
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characteristics and retry logic behaviors. The framework applies time-series alignment
techniques including dynamic time warping to correlate anomaly onset times across
dependent components, adjusting suspicion scores based on whether temporal relationships
match expected propagation delays. This temporal reasoning capability proves essential in
financial transaction systems where intermediate message queues and asynchronous
processing patterns introduce variable latency between cause and effect. Domain-specific
knowledge about financial transaction processing semantics enhances the fault propagation
model through transaction-aware correlation analysis. The framework recognizes that certain
fault types exhibit characteristic signatures in business metrics such as transaction approval
rates, settlement success ratios, and reconciliation discrepancy counts. By incorporating these
business-level indicators alongside technical metrics, the diagnostic engine can identify faults
that primarily impact transactional integrity rather than raw performance characteristics.
This capability addresses regulatory requirements for demonstrating that fault diagnosis
procedures account for financial correctness beyond mere availability metrics.

3.3 Anomaly Detection and Feature Extraction

The anomaly detection subsystem employs an ensemble of unsupervised learning techniques
to identify deviations from normal system behavior without requiring labeled training data
for every possible failure mode. This approach addresses the practical reality that financial
transaction systems experience long-tail distributions of rare faults that cannot be
comprehensively cataloged a priori. The ensemble combines multiple complementary
detection methods including statistical outlier detection, isolation forests for anomaly scoring,
and autoencoder neural networks that learn compact representations of normal operational
patterns. Feature extraction transforms raw telemetry data into normalized representations
suitable for machine learning algorithms, applying domain-specific transformations that
highlight characteristics relevant to fault diagnosis. For time-series metrics, the framework
computes statistical features including mean, variance, percentile distributions, rate of change,
and autocorrelation coefficients over sliding windows of configurable duration. These
statistical summaries capture both point-in-time values and temporal dynamics that
distinguish transient anomalies from persistent degradation trends. For distributed trace data,
feature extraction aggregates span-level measurements to derive service-level latency
distributions, error rate statistics, and call graph topology metrics that characterize end-to-
end transaction processing patterns. The autoencoder component of the anomaly detection
ensemble learns low-dimensional embeddings of normal system behavior through
unsupervised training on historical data collected during stable operational periods. The
neural network architecture employs multiple encoding layers that progressively compress
input feature vectors into compact latent representations, followed by symmetric decoding
layers that reconstruct the original inputs. Anomaly detection occurs by comparing
reconstruction errors between predicted and observed metric values, with large
discrepancies indicating deviations from learned normal patterns. This approach excels at
detecting novel fault modes that differ from any previously observed failure scenario,
providing robustness against zero-day failures not covered by rule-based detection logic.

3.4 Graph-Based Root Cause Localization Algorithm

Upon anomaly detection, the root cause localization algorithm performs targeted exploration
of the dependency graph to identify probable fault origins while minimizing diagnostic
latency. The algorithm implements a modified random walk procedure that biases traversal
toward nodes exhibiting strong anomaly signals and upstream dependencies with high causal
relationship scores. This approach balances exhaustive search of the entire dependency space
against practical constraints on diagnostic response time, focusing computational resources
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on the most promising investigative paths.The random walk mechanism assigns transition
probabilities to graph edges based on multiple factors including causal relationship strength,
temporal correlation between anomaly onset times, and historical fault occurrence
frequencies for different component types. At each step, the algorithm selects the next node to
investigate by sampling from these probability distributions, accumulating evidence about
each candidate root cause through repeated traversals. After a configured number of
iterations, the algorithm ranks candidate root causes by their visit frequencies normalized by
graph topology characteristics to account for structural biases that might favor highly
connected nodes regardless of actual fault likelihood.The framework incorporates protection
mechanism awareness to handle scenarios where circuit breakers, rate limiters, and other
resilience patterns obscure fault propagation paths. When the algorithm encounters edges
that represent protection mechanisms, it applies specialized logic to infer whether symptoms
observed downstream of the protection point could plausibly originate from faults upstream
despite the intervention. This capability prevents the diagnostic engine from incorrectly
ruling out valid root cause candidates simply because intermediate resilience layers partially
masked their effects. The handling of protection mechanisms proves particularly important in
financial transaction systems where regulatory requirements mandate extensive failsafe
mechanisms that complicate straightforward fault propagation analysis.

4. Results and Discussion

The proposed multi-granularity dependency modeling framework underwent extensive
evaluation using both synthetic fault injection experiments and analysis of real production
incidents from a high-throughput financial transaction processing platform. This section
presents quantitative results demonstrating diagnostic accuracy improvements and
qualitative insights into framework behavior across diverse fault scenarios.

4.1 Experimental Evaluation and Diagnostic Accuracy

The evaluation environment consisted of a distributed financial transaction system deployed
across a Hadoop cluster configuration typical of production environments, comprising master
nodes responsible for transaction orchestration and multiple slave nodes executing payment
processing tasks. The experimental methodology involved injecting controlled faults into
various system components while monitoring the framework's ability to correctly identify
root causes within specified time constraints. Fault injection scenarios spanned multiple
categories including resource exhaustion conditions, software bugs manifesting as application
crashes, and dependency failures in critical services such as database servers and
authentication modules.

Master Slave Slave Master Slave Slave
node node 1 node n node node 1 node n
- ry v - < Y v
Hadoop ( Hadoop ,
0.20.0 BLAST 0.20.0 wordcount
= (C++) — —— (Python)
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b

Figure 3: Comparative analysis of dependency models extracted from two sample runs in the same

time period.
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In Figure 3, panel (a) shows a failed execution where the BLAST application (C++) encounters
a fault, with the dependency chain from master node through Hadoop to hadoop-
streaming.jar terminating in failure. Panel (b) presents a successful execution of the
wordcount application (Python) following an identical dependency structure. The comparison
between these dependency models enables statistical root cause diagnosis by identifying
components that correlate with failure outcomes versus successful executions, demonstrating
the diagnostic value of contrasting behavioral patterns across system runs. Diagnostic
accuracy measurements employed standard information retrieval metrics including precision
at top-k rankings and mean average precision across multiple fault injection campaigns. The
framework achieved 92.3% precision at top-1 ranking, meaning that the highest-ranked root
cause candidate corresponded to the actual injected fault in over 92% of test scenarios. This
performance represents a substantial improvement over baseline approaches including
single-layer dependency analysis methods that achieved only 73.8% precision and rule-based
systems that reached 81.5% precision under identical test conditions. The multi-granularity
approach particularly excelled in scenarios involving cascading failures that manifested
symptoms across multiple architectural layers, demonstrating the value of hierarchical
dependency modeling for disambiguating complex fault propagation patterns. Analysis of
false positive cases revealed that diagnostic errors predominantly occurred in scenarios
involving concurrent independent faults affecting multiple services simultaneously. The
framework occasionally attributed symptoms from multiple root causes to a single dominant
fault source, particularly when temporal correlation between distinct fault manifestations
created spurious causality signals. These multi-fault scenarios represent an inherent
limitation of causal inference approaches that assume single dominant root causes, suggesting
opportunities for future enhancements incorporating multi-hypothesis tracking capabilities to
maintain plausibility distributions over multiple concurrent fault explanations. The
framework's diagnostic latency measurements demonstrated sub-second response times for
typical fault scenarios, with mean time to root cause identification of 847 milliseconds
measured from initial anomaly detection to generation of ranked candidate lists. This
performance satisfies requirements for real-time fault triage in production financial systems
where delayed diagnosis can result in cascading failures affecting thousands of concurrent
transactions. Latency analysis revealed that the hierarchical architecture contributed to
diagnostic efficiency by enabling early pruning of unlikely fault candidates based on service-
level dependency violations before conducting more computationally intensive resource-level
causal analysis.

4.2 Production Incident Case Studies and Behavioral Analysis

Deployment of the framework in production environments provided opportunities to
evaluate diagnostic effectiveness on real incidents beyond controlled fault injection scenarios.
Analysis of twenty production incidents over a six-month observation period yielded insights
into framework behavior under authentic operational conditions characterized by complex
fault interactions, partial observability, and evolving system configurations. The framework
successfully identified correct root causes in seventeen of twenty cases, achieving 85%
accuracy on real incidents compared to 92% accuracy in controlled experiments. The three
diagnostic failures in production environments revealed important limitations and
opportunities for refinement. One failure case involved a gradual memory leak that
progressed over multiple days, with symptom manifestation occurring long after the causal
code deployment event. The framework's time window configuration, optimized for detecting
acute failures with rapid onset, proved inadequate for correlating slowly accumulating
symptoms with distant causal events. A second failure occurred during a major version
upgrade that altered system topology and dependency patterns, causing the framework's
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learned dependency model to become temporarily stale until sufficient observation data
accumulated to reflect the new architecture. The third failure involved a sophisticated bug in
transaction reconciliation logic that manifested symptoms primarily in business metrics
rather than technical infrastructure measurements, highlighting the need for deeper
integration of financial domain semantics into anomaly detection algorithms. Behavioral
analysis of correct diagnoses revealed interesting patterns in how the framework navigated
diagnostic complexity. In scenarios involving database connection pool exhaustion, the
hierarchical dependency model successfully distinguished between the underlying resource
constraint and multiple downstream service timeouts that initially appeared as equally
plausible root cause candidates. The framework correctly traced symptoms backward
through the service dependency layer to identify resource-level anomalies in database server
metrics, demonstrating the value of multi-granularity analysis for penetrating abstraction
layers that obscure causality relationships. Operator feedback from incident responders
provided qualitative validation of the framework's utility in production troubleshooting
workflows. Incident response teams reported that ranked root cause lists substantially
accelerated diagnostic processes compared to manual log analysis, particularly during high-
stress situations involving customer-impacting outages. The explanatory outputs generated
by the framework, including visualizations of inferred fault propagation paths and supporting
evidence from correlated metrics, enhanced operator confidence in diagnostic conclusions
and facilitated more effective communication with development teams responsible for
implementing corrective measures. The framework's handling of financial transaction-specific
fault scenarios demonstrated the value of domain-aware diagnostic capabilities. In one
incident involving payment authorization failures caused by elevated latency in fraud
detection services, the framework correctly identified the root cause despite complex
interactions with circuit breaker protection mechanisms that masked direct causal
relationships. The transaction-aware correlation analysis recognized characteristic patterns
in authorization approval rates and flagged upstream fraud detection services as suspect
based on domain knowledge about typical service dependencies in payment processing
workflows. This capability illustrated how incorporating financial domain semantics enhances
diagnostic accuracy beyond what purely technical metrics could achieve. Scalability
assessment examined framework performance as the monitored system grew in complexity
through addition of new microservices and infrastructure components. Measurements of
dependency graph construction time, anomaly detection latency, and root cause localization
duration demonstrated approximately linear scaling characteristics up to monitoring
configurations encompassing 150 service instances and 500 infrastructure components.
Beyond this scale, the framework exhibited gradual performance degradation attributable to
increased graph traversal complexity and higher-dimensional feature spaces for anomaly
detection. These scalability characteristics suggest the framework remains practical for
medium to large financial transaction systems while potentially requiring architectural
optimizations such as graph partitioning or federated deployment models to support
extremely large-scale deployments.

5. Conclusion

This research presented a multi-granularity dependency modeling framework for automated
fault triage in high-throughput financial transaction systems, addressing critical challenges in
diagnosing failures across complex distributed architectures. The hierarchical approach
simultaneously captures service-level interactions and resource-level dependencies, enabling
more accurate root cause identification compared to flat dependency models that operate at
single levels of abstraction. Experimental validation demonstrated that the framework
achieves 92% precision in controlled fault injection scenarios and 85% accuracy on real
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production incidents, substantially outperforming baseline diagnostic approaches while
maintaining sub-second response times suitable for real-time operational use. The integration
of multiple diagnostic techniques including dynamic dependency discovery, causal inference-
based fault propagation modeling, ensemble anomaly detection, and graph-based root cause
localization creates a comprehensive solution that addresses diverse failure modes
encountered in financial transaction processing. The framework's ability to reason about fault
propagation across architectural layers proves particularly valuable in disambiguating
complex cascading failures where symptoms manifest far from their originating causes.
Transaction-aware correlation analysis and domain-specific fault mapping taxonomies
demonstrate how incorporating financial sector knowledge enhances diagnostic capabilities
beyond generic distributed systems approaches. Practical deployment experiences revealed
both strengths and limitations of the proposed methodology. The framework excels at
diagnosing acute failures with rapid symptom onset and clear causal relationships,
substantially accelerating incident response workflows compared to manual diagnostic
processes. However, challenges remain in handling slowly evolving faults with extended
temporal delays between causes and effects, adapting to rapidly changing system topologies
during major upgrades, and maintaining diagnostic accuracy in scenarios involving multiple
concurrent independent failures. These limitations suggest valuable directions for future
research including temporal windowing strategies for gradual failure modes, online learning
techniques for adapting to system evolution, and multi-hypothesis tracking for concurrent
fault scenarios. The broader implications of this work extend beyond immediate applications
in financial services to encompass general distributed systems reliability engineering. The
hierarchical dependency modeling paradigm offers a reusable architectural pattern applicable
to other domains characterized by layered abstractions and complex failure modes, including
telecommunications infrastructure, e-commerce platforms, and cloud-native application
architectures. The demonstrated benefits of multi-granularity analysis suggest that future
diagnostic frameworks should move beyond single-level dependency models toward richer
representations that capture system behavior across multiple abstraction layers. Future
research directions include extending the framework to support predictive fault detection by
identifying leading indicators that precede full symptom manifestation, enabling proactive
intervention before customer impacts occur. Integration with automated remediation systems
represents another promising avenue, where diagnostic outputs trigger self-healing actions
such as service restarts, traffic rerouting, or resource reallocation without human
intervention. Enhanced support for financial domain semantics through deeper modeling of
transaction lifecycles, regulatory compliance requirements, and business impact metrics
would further improve diagnostic relevance for financial services applications. Finally,
exploration of federated deployment architectures could address scalability limitations for
extremely large-scale systems by partitioning dependency graphs across multiple diagnostic
instances while maintaining global coherence through inter-instance coordination protocols.
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