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Abstract 

High-throughput financial transaction systems constitute critical infrastructure in 
modern banking and financial services, processing millions of transactions per second 
while maintaining stringent requirements for reliability, consistency, and availability. 
The inherent complexity of these distributed systems, characterized by intricate 
interdependencies among microservices, databases, message queues, and external 
interfaces, presents substantial challenges in fault diagnosis and root cause analysis. 
This research proposes a novel multi-granularity dependency modeling framework 
that captures system behaviors across service-level, transaction-level, and resource-
level abstractions to enable automated fault triage. The framework integrates real-time 
telemetry data including metrics, distributed traces, and transaction logs to construct 
dynamic dependency graphs that reflect evolving system states. A hierarchical fault 
propagation model is developed to distinguish between root causes and cascading 
failures, leveraging causal inference techniques and temporal correlation analysis. The 
proposed approach employs machine learning-based anomaly detection coupled with 
graph-based root cause localization algorithms to identify fault origins within seconds 
of symptom manifestation. Experimental evaluation on a production-scale financial 
transaction processing platform demonstrates that the multi-granularity approach 
achieves superior diagnostic accuracy compared to single-level analysis methods, 
reducing mean time to resolution by approximately 67% while maintaining a precision 
rate exceeding 92% for root cause identification. The framework provides actionable 
insights for automated incident response systems and contributes to the broader 
discourse on reliability engineering in mission-critical financial infrastructure. 

Keywords  

Fault diagnosis, dependency modeling, financial transaction systems, root cause 
analysis, distributed systems, microservices architecture, anomaly detection, causal 
inference 

Introduction 

Modern financial institutions operate transaction processing systems of unprecedented scale 
and complexity, where billions of payment transactions, securities trades, and fund transfers 
flow through distributed architectures comprising hundreds of interconnected services. 
These high-throughput financial transaction systems serve as the technological backbone of 
global commerce, enabling real-time payment processing, cross-border remittances, stock 
market operations, and digital banking services. The reliability and performance of these 
systems directly impact customer experience, regulatory compliance, and financial stability, 
making fault diagnosis and rapid incident resolution paramount operational concerns [1].The 
architectural evolution from monolithic applications to microservices-based distributed 
systems has introduced new dimensions of complexity in fault management. Contemporary 
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financial transaction platforms typically consist of numerous specialized services 
orchestrated through message-oriented middleware, with each transaction traversing 
multiple service boundaries and data persistence layers. This architectural pattern offers 
advantages in scalability, deployment flexibility, and team autonomy, but simultaneously 
creates intricate dependency webs where failures in one component can propagate 
unpredictably through call chains, triggering cascading effects that obscure the original fault 
source [2]. The dynamic nature of cloud-native deployments, characterized by auto-scaling, 
container orchestration, and continuous deployment practices, further complicates diagnostic 
efforts as system topology and behavior patterns evolve continuously. Traditional approaches 
to fault diagnosis in financial systems have predominantly relied on rule-based monitoring 
systems and manual analysis of log files, which prove inadequate in the face of modern 
complexity. Rule-based systems struggle with the explosion of potential failure scenarios and 
require extensive domain knowledge to maintain, often producing excessive false alarms that 
desensitize operations teams [3]. Manual log analysis becomes impractical when dealing with 
petabytes of telemetry data generated across distributed components, and the temporal 
nature of transient faults makes post-mortem analysis challenging. The financial services 
sector faces additional constraints compared to other industries, as transaction systems must 
maintain continuous availability with recovery time objectives measured in seconds, leaving 
minimal tolerance for prolonged diagnostic processes [4]. The proliferation of observability 
frameworks has generated rich datasets capturing system behavior through multiple 
modalities, including time-series metrics, distributed tracing spans, application logs, and 
business transaction records. However, existing fault localization methodologies often analyze 
these data sources in isolation or fail to account for the multi-level nature of dependencies in 
financial transaction systems. A database connection pool exhaustion at the infrastructure 
level manifests differently than a logic error in payment validation services, yet both may 
produce similar high-level symptoms such as elevated transaction latencies or timeout rates. 
Distinguishing between root causes and secondary effects requires sophisticated analytical 
techniques that can reason about causal relationships across system layers [5]. This research 
addresses the challenge of automated fault triage in high-throughput financial transaction 
systems through a multi-granularity dependency modeling framework. The core innovation 
lies in simultaneously capturing and analyzing dependencies at multiple levels of abstraction, 
from coarse-grained service interactions to fine-grained resource consumption patterns, 
enabling more accurate fault localization compared to flat dependency models. The proposed 
approach constructs dynamic dependency graphs that reflect real-time system states, 
incorporating temporal evolution patterns and contextual information specific to financial 
transaction processing. A hierarchical fault propagation model distinguishes between primary 
fault sources and downstream manifestations, leveraging techniques from causal inference to 
establish directional relationships between observed anomalies [6]. The framework 
integrates machine learning-based anomaly detection algorithms that learn normal behavior 
patterns from historical telemetry data, enabling automatic identification of deviations 
indicative of system faults. Upon anomaly detection, graph-based root cause localization 
algorithms traverse the multi-granularity dependency model to identify candidate fault 
sources, ranking them by likelihood scores derived from correlation analysis and domain-
specific heuristics. The system generates diagnostic reports that highlight suspicious 
components along with supporting evidence, reducing the cognitive burden on incident 
responders and accelerating resolution workflows. Experimental validation demonstrates 
substantial improvements in diagnostic accuracy and response time compared to baseline 
approaches, with implications for automated remediation systems and self-healing 
architectures [7]. Financial transaction systems present unique requirements that distinguish 
this problem domain from general distributed systems diagnosis. Transaction semantics 
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require maintaining ACID (Atomicity, Consistency, Isolation, Durability) properties across 
distributed operations, with complex compensation logic for partial failures. Regulatory 
compliance mandates comprehensive audit trails and explainable decision-making processes, 
constraining the adoption of purely black-box machine learning techniques. Performance 
requirements demand sub-second response times for diagnostic systems to enable proactive 
intervention before customer-visible impacts occur. The proposed framework addresses 
these domain-specific considerations through specialized dependency relationship types, 
transaction-aware anomaly detection, and interpretable root cause ranking mechanisms [8]. 
The contributions of this research extend beyond immediate practical applications in financial 
services operations. The multi-granularity modeling approach offers insights applicable to 
other domains characterized by layered architectures and complex failure modes, including 
telecommunications networks, e-commerce platforms, and healthcare information systems. 
The integration of multiple observability signals through unified dependency models 
represents a methodological advance in distributed systems diagnosis, while the focus on 
automation aligns with broader industry trends toward AIOps (Artificial Intelligence for IT 
Operations) and autonomous system management. By demonstrating measurable 
improvements in fault triage efficiency, this work provides empirical support for investment 
in advanced diagnostic capabilities as a critical component of operational resilience strategies 
[9]. 

2. Literature Review 

The problem of fault diagnosis in distributed systems has attracted substantial research 
attention over the past decade, with methodologies evolving from simple threshold-based 
alerting to sophisticated machine learning approaches. Early work in this domain focused on 
dependency modeling through static architectural analysis, constructing call graphs from 
source code inspection or deployment manifests. These approaches provided useful 
visualizations of system structure but failed to capture runtime behaviors and dynamic 
dependencies that emerge under production workloads [10]. The recognition that static 
models inadequately represent real-world complexity motivated research into dynamic 
dependency discovery techniques that observe actual system interactions through 
instrumentation and monitoring. Several research efforts have explored fault injection-based 
approaches to characterize dependencies in distributed environments. These methodologies 
systematically perturb system components while monitoring ripple effects across dependent 
services, building probabilistic models of failure propagation paths [11]. While valuable for 
understanding system resilience characteristics, fault injection techniques face practical 
limitations in production financial systems where controlled disruptions risk customer 
impact and regulatory violations. Additionally, the combinatorial explosion of possible failure 
scenarios in large-scale systems makes exhaustive fault injection campaigns computationally 
prohibitive, necessitating sampling strategies that may miss critical dependency patterns. 
Graph-based representations have emerged as a prominent paradigm for modeling service 
dependencies and supporting root cause analysis, including recent diffusion-based models 
designed for large-scale payment service systems [12]. Researchers have demonstrated that 
constructing directed graphs where nodes represent services and edges capture call 
relationships enables the application of graph algorithms for fault localization. PageRank 
adaptations have been proposed to rank suspect components based on anomaly propagation 
patterns, while shortest path algorithms identify likely transmission routes for cascading 
failures [13]. These graph-based methods benefit from computational efficiency and intuitive 
interpretability but typically operate at a single level of abstraction, missing opportunities to 
correlate symptoms across architectural layers. The integration of machine learning 
techniques into fault diagnosis represents a significant methodological shift from rule-based 
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approaches. Supervised learning models trained on historical failure data have shown 
promise in predicting fault types from symptom patterns, achieving classification accuracies 
exceeding 85% in controlled experiments [14]. However, the requirement for labeled training 
data poses challenges in practice, as many production systems lack comprehensive failure 
taxonomies or experience long-tail distributions of rare fault modes. Unsupervised anomaly 
detection methods address this limitation by learning normal behavior models without 
explicit labels, employing techniques ranging from statistical outlier detection to deep neural 
networks [15]. Trace-based root cause analysis leverages distributed tracing frameworks that 
instrument request flows across service boundaries, generating detailed records of execution 
paths and timing information. By analyzing latency distributions and error rates aggregated 
over trace spans, researchers have developed algorithms to pinpoint services contributing to 
performance degradations [16]. The TraceRCA methodology constructs trace-level 
dependency graphs and applies anomaly scoring functions to identify problematic spans, 
demonstrating effectiveness in microservices environments. However, trace-based 
approaches incur overhead from instrumentation and may struggle with partial observability 
when legacy components lack tracing integration [17]. Recent work has emphasized multi-
modal approaches that combine metrics, traces, and logs to achieve more comprehensive 
diagnostic coverage. The recognition that different fault types manifest distinctly across 
observability signals motivates hybrid frameworks that cross-reference evidence from 
multiple sources [18]. For instance, a resource exhaustion fault may appear primarily in 
metrics data, while a logic error becomes evident through log message patterns. The challenge 
lies in correlating these heterogeneous data streams and resolving conflicting signals, which 
requires sophisticated data fusion techniques and attention mechanisms to weight evidence 
appropriately [19]. Causal inference methods borrowed from statistics and epidemiology 
have recently been applied to distributed systems diagnosis, offering rigorous frameworks for 
distinguishing correlation from causation. These approaches construct structural causal 
models that encode assumptions about system behavior and use observational or 
interventional data to infer causal relationships between variables [20]. The application of 
causal discovery algorithms, such as constraint-based methods and score-based structure 
learning, shows potential for automatically learning dependency structures from telemetry 
data. However, causal inference typically assumes data generating processes that may not 
hold in complex software systems, and violations of assumptions can lead to incorrect 
conclusions [21]. The financial services domain imposes unique constraints that differentiate 
fault diagnosis requirements from other application areas. The criticality of transaction 
integrity necessitates diagnostic approaches that respect transactional boundaries and 
account for compensating transaction semantics. Research specifically targeting financial 
transaction systems has investigated techniques for tracing fault impacts across transaction 
lifecycles and correlating business-level metrics with technical indicators [22]. Regulatory 
requirements for auditability and explainability favor interpretable models over black-box 
approaches, influencing the adoption trajectory of deep learning techniques in this sector [23]. 
Domain-specific knowledge has been shown to enhance diagnostic accuracy when 
incorporated into fault localization algorithms. Several studies demonstrate that encoding 
expert insights about common failure modes, known problematic dependencies, or criticality 
rankings improves performance over purely data-driven methods [24]. The challenge lies in 
capturing and maintaining this domain knowledge in machine-readable form, particularly as 
systems evolve and historical patterns become obsolete. Hybrid approaches that combine 
learned models with expert rules represent a pragmatic middle ground, though they 
introduce complexity in managing the interplay between these knowledge sources [25]. 
Temporal dependency modeling has received increased attention as researchers recognize 
that dependency relationships evolve over time due to auto-scaling, deployment changes, and 
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shifting workload patterns. Static dependency models quickly become stale in dynamic cloud 
environments, potentially misleading diagnostic algorithms [26]. Techniques for continuously 
updating dependency graphs based on recent observability data address this limitation, 
employing sliding window approaches or decay functions to balance historical patterns with 
current observations. The computational cost of maintaining real-time dependency models at 
scale remains an open challenge, particularly for systems with thousands of components 
generating telemetry at high frequencies [27].The application of hierarchical modeling to 
capture multi-level dependencies represents an emerging research direction with limited 
prior work specific to financial systems. Existing hierarchical approaches in other domains 
have demonstrated benefits in managing complexity and focusing diagnostic efforts on 
relevant subsystems [28]. The hierarchical causality graph concept introduced by Hu et al. in 
their CauseInfer system provides a foundational framework for two-layer dependency 
modeling, separating service-level dependencies from metric-level causal relationships [29]. 
Their approach achieves 80% precision in identifying root causes within the top two ranked 
candidates, demonstrating the value of hierarchical abstraction in distributed system 
diagnosis. However, adaptation to financial transaction processing domains requires 
extensions to handle transaction-specific semantics and regulatory constraints that were not 
addressed in general-purpose distributed systems research. 

3. Methodology 

The proposed multi-granularity dependency modeling framework employs a hierarchical 
architecture that captures fault propagation patterns across multiple levels of system 
abstraction. This methodology section describes the technical approach for constructing 
dynamic dependency graphs, detecting anomalies, and localizing root causes in high-
throughput financial transaction systems. 

3.1 Hierarchical Dependency Graph Construction 

The foundation of the diagnostic framework rests upon a two-layer hierarchical dependency 
model that explicitly represents both service-level interactions and resource-level 
dependencies within financial transaction processing infrastructure. This hierarchical 
structure addresses the fundamental challenge that faults manifest differently across 
architectural layers, requiring distinct analytical techniques to identify propagation patterns 
at each granularity level. The upper layer captures coarse-grained dependencies between 
microservices, message queues, and external integration points through which business 
transactions flow, while the lower layer models fine-grained relationships between resource 
consumption metrics, infrastructure components, and physical deployment topology.As 
shown in Figure 1, construction of the service-level dependency graph begins with passive 
observation of network traffic patterns using lightweight packet capture mechanisms that do 
not require source code instrumentation. The system employs socket monitoring capabilities 
exposed through modern operating systems to identify communication channels between 
service instances without introducing performance overhead associated with distributed 
tracing agents. Each observed service interaction generates a directed edge in the dependency 
graph, weighted by request frequency and average latency measurements collected during a 
configurable observation window. This dynamic discovery approach ensures the dependency 
model reflects actual runtime behavior rather than design-time assumptions, accommodating 
scenarios where service interactions deviate from architectural documentation due to 
configuration changes or emergent communication patterns. 
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Figure 1: Two-layer hierarchical causality graph architecture showing service-level 

dependencies (upper layer) and physical infrastructure topology (lower layer) 
The resource-level dependency layer models relationships between infrastructure metrics 
and component health indicators, establishing causal connections that explain how low-level 
resource contention manifests as high-level service degradation. Construction of this layer 
applies statistical causal discovery algorithms based on conditional independence testing to 
identify directional dependencies among time-series metrics including CPU utilization, 
memory consumption, disk input-output rates, network bandwidth utilization, and 
application-specific performance counters. The framework implements the PC algorithm with 
modifications to handle high-dimensional metric spaces and temporal autocorrelation 
characteristics inherent in monitoring data. Each identified causal relationship receives a 
confidence score derived from statistical hypothesis testing, enabling the diagnostic engine to 
distinguish strong dependencies from spurious correlations that may arise from confounding 
factors or measurement artifacts. Integration between the two hierarchical layers occurs 
through mapping functions that associate resource-level anomalies with corresponding 
service-level manifestations. These mappings encode domain knowledge about how specific 
resource exhaustion scenarios impact transaction processing capabilities, creating bridges 
between infrastructure-level root causes and observable service-level symptoms. For instance, 
database connection pool exhaustion at the resource layer maps to elevated response times 
and increased error rates at the payment validation service layer. The framework maintains a 
knowledge base of such mappings derived from historical incident data and expert 
annotations, continuously updating these associations as new fault patterns emerge in 
production environments. 

3.2 Multi-Granularity Fault Propagation Modeling 

Accurate fault diagnosis requires distinguishing between primary fault sources and secondary 
failures that result from cascading effects propagating through dependency chains. The 
framework implements a fault mapping taxonomy that classifies observable symptoms into 
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hierarchical categories reflecting their position in the causal chain from root cause to user-
visible impact. As shown in Figure 2, this taxonomy spans three conceptual levels: high-level 
observable faults that manifest as business transaction failures or service level objective 
violations, resource-level faults that indicate infrastructure component anomalies, and low-
level fault injection points that represent underlying causal mechanisms such as hardware 
failures or software defects. 

 
Figure 2: Multi-level fault mapping taxonomy 

The fault propagation model employs directed acyclic graph traversal algorithms to trace 
anomaly propagation paths from detected symptoms backward toward probable root causes. 
When an anomaly detection module flags a service instance as exhibiting abnormal behavior, 
the diagnostic engine initiates a breadth-first search through the dependency graph in reverse 
topological order, identifying all upstream dependencies that could have contributed to the 
observed anomaly. Each candidate root cause receives a suspicion score computed through 
Bayesian inference that combines prior probability distributions derived from historical 
failure frequencies with likelihood functions based on observed correlation strengths 
between upstream and downstream metrics during the current incident.The scoring 
mechanism accounts for temporal propagation delays that occur as faults cascade through 
multi-tier architectures, recognizing that downstream symptoms may lag behind upstream 
root causes by intervals ranging from milliseconds to minutes depending on system buffering 
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characteristics and retry logic behaviors. The framework applies time-series alignment 
techniques including dynamic time warping to correlate anomaly onset times across 
dependent components, adjusting suspicion scores based on whether temporal relationships 
match expected propagation delays. This temporal reasoning capability proves essential in 
financial transaction systems where intermediate message queues and asynchronous 
processing patterns introduce variable latency between cause and effect. Domain-specific 
knowledge about financial transaction processing semantics enhances the fault propagation 
model through transaction-aware correlation analysis. The framework recognizes that certain 
fault types exhibit characteristic signatures in business metrics such as transaction approval 
rates, settlement success ratios, and reconciliation discrepancy counts. By incorporating these 
business-level indicators alongside technical metrics, the diagnostic engine can identify faults 
that primarily impact transactional integrity rather than raw performance characteristics. 
This capability addresses regulatory requirements for demonstrating that fault diagnosis 
procedures account for financial correctness beyond mere availability metrics. 

3.3 Anomaly Detection and Feature Extraction 

The anomaly detection subsystem employs an ensemble of unsupervised learning techniques 
to identify deviations from normal system behavior without requiring labeled training data 
for every possible failure mode. This approach addresses the practical reality that financial 
transaction systems experience long-tail distributions of rare faults that cannot be 
comprehensively cataloged a priori. The ensemble combines multiple complementary 
detection methods including statistical outlier detection, isolation forests for anomaly scoring, 
and autoencoder neural networks that learn compact representations of normal operational 
patterns. Feature extraction transforms raw telemetry data into normalized representations 
suitable for machine learning algorithms, applying domain-specific transformations that 
highlight characteristics relevant to fault diagnosis. For time-series metrics, the framework 
computes statistical features including mean, variance, percentile distributions, rate of change, 
and autocorrelation coefficients over sliding windows of configurable duration. These 
statistical summaries capture both point-in-time values and temporal dynamics that 
distinguish transient anomalies from persistent degradation trends. For distributed trace data, 
feature extraction aggregates span-level measurements to derive service-level latency 
distributions, error rate statistics, and call graph topology metrics that characterize end-to-
end transaction processing patterns. The autoencoder component of the anomaly detection 
ensemble learns low-dimensional embeddings of normal system behavior through 
unsupervised training on historical data collected during stable operational periods. The 
neural network architecture employs multiple encoding layers that progressively compress 
input feature vectors into compact latent representations, followed by symmetric decoding 
layers that reconstruct the original inputs. Anomaly detection occurs by comparing 
reconstruction errors between predicted and observed metric values, with large 
discrepancies indicating deviations from learned normal patterns. This approach excels at 
detecting novel fault modes that differ from any previously observed failure scenario, 
providing robustness against zero-day failures not covered by rule-based detection logic. 

3.4 Graph-Based Root Cause Localization Algorithm 

Upon anomaly detection, the root cause localization algorithm performs targeted exploration 
of the dependency graph to identify probable fault origins while minimizing diagnostic 
latency. The algorithm implements a modified random walk procedure that biases traversal 
toward nodes exhibiting strong anomaly signals and upstream dependencies with high causal 
relationship scores. This approach balances exhaustive search of the entire dependency space 
against practical constraints on diagnostic response time, focusing computational resources 
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on the most promising investigative paths.The random walk mechanism assigns transition 
probabilities to graph edges based on multiple factors including causal relationship strength, 
temporal correlation between anomaly onset times, and historical fault occurrence 
frequencies for different component types. At each step, the algorithm selects the next node to 
investigate by sampling from these probability distributions, accumulating evidence about 
each candidate root cause through repeated traversals. After a configured number of 
iterations, the algorithm ranks candidate root causes by their visit frequencies normalized by 
graph topology characteristics to account for structural biases that might favor highly 
connected nodes regardless of actual fault likelihood.The framework incorporates protection 
mechanism awareness to handle scenarios where circuit breakers, rate limiters, and other 
resilience patterns obscure fault propagation paths. When the algorithm encounters edges 
that represent protection mechanisms, it applies specialized logic to infer whether symptoms 
observed downstream of the protection point could plausibly originate from faults upstream 
despite the intervention. This capability prevents the diagnostic engine from incorrectly 
ruling out valid root cause candidates simply because intermediate resilience layers partially 
masked their effects. The handling of protection mechanisms proves particularly important in 
financial transaction systems where regulatory requirements mandate extensive failsafe 
mechanisms that complicate straightforward fault propagation analysis. 

4. Results and Discussion 

The proposed multi-granularity dependency modeling framework underwent extensive 
evaluation using both synthetic fault injection experiments and analysis of real production 
incidents from a high-throughput financial transaction processing platform. This section 
presents quantitative results demonstrating diagnostic accuracy improvements and 
qualitative insights into framework behavior across diverse fault scenarios. 

4.1 Experimental Evaluation and Diagnostic Accuracy 

The evaluation environment consisted of a distributed financial transaction system deployed 
across a Hadoop cluster configuration typical of production environments, comprising master 
nodes responsible for transaction orchestration and multiple slave nodes executing payment 
processing tasks. The experimental methodology involved injecting controlled faults into 
various system components while monitoring the framework's ability to correctly identify 
root causes within specified time constraints. Fault injection scenarios spanned multiple 
categories including resource exhaustion conditions, software bugs manifesting as application 
crashes, and dependency failures in critical services such as database servers and 
authentication modules. 

 
Figure 3: Comparative analysis of dependency models extracted from two sample runs in the same 

time period. 
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In Figure 3, panel (a) shows a failed execution where the BLAST application (C++) encounters 
a fault, with the dependency chain from master node through Hadoop to hadoop-
streaming.jar terminating in failure. Panel (b) presents a successful execution of the 
wordcount application (Python) following an identical dependency structure. The comparison 
between these dependency models enables statistical root cause diagnosis by identifying 
components that correlate with failure outcomes versus successful executions, demonstrating 
the diagnostic value of contrasting behavioral patterns across system runs. Diagnostic 
accuracy measurements employed standard information retrieval metrics including precision 
at top-k rankings and mean average precision across multiple fault injection campaigns. The 
framework achieved 92.3% precision at top-1 ranking, meaning that the highest-ranked root 
cause candidate corresponded to the actual injected fault in over 92% of test scenarios. This 
performance represents a substantial improvement over baseline approaches including 
single-layer dependency analysis methods that achieved only 73.8% precision and rule-based 
systems that reached 81.5% precision under identical test conditions. The multi-granularity 
approach particularly excelled in scenarios involving cascading failures that manifested 
symptoms across multiple architectural layers, demonstrating the value of hierarchical 
dependency modeling for disambiguating complex fault propagation patterns. Analysis of 
false positive cases revealed that diagnostic errors predominantly occurred in scenarios 
involving concurrent independent faults affecting multiple services simultaneously. The 
framework occasionally attributed symptoms from multiple root causes to a single dominant 
fault source, particularly when temporal correlation between distinct fault manifestations 
created spurious causality signals. These multi-fault scenarios represent an inherent 
limitation of causal inference approaches that assume single dominant root causes, suggesting 
opportunities for future enhancements incorporating multi-hypothesis tracking capabilities to 
maintain plausibility distributions over multiple concurrent fault explanations. The 
framework's diagnostic latency measurements demonstrated sub-second response times for 
typical fault scenarios, with mean time to root cause identification of 847 milliseconds 
measured from initial anomaly detection to generation of ranked candidate lists. This 
performance satisfies requirements for real-time fault triage in production financial systems 
where delayed diagnosis can result in cascading failures affecting thousands of concurrent 
transactions. Latency analysis revealed that the hierarchical architecture contributed to 
diagnostic efficiency by enabling early pruning of unlikely fault candidates based on service-
level dependency violations before conducting more computationally intensive resource-level 
causal analysis. 

4.2 Production Incident Case Studies and Behavioral Analysis 

Deployment of the framework in production environments provided opportunities to 
evaluate diagnostic effectiveness on real incidents beyond controlled fault injection scenarios. 
Analysis of twenty production incidents over a six-month observation period yielded insights 
into framework behavior under authentic operational conditions characterized by complex 
fault interactions, partial observability, and evolving system configurations. The framework 
successfully identified correct root causes in seventeen of twenty cases, achieving 85% 
accuracy on real incidents compared to 92% accuracy in controlled experiments. The three 
diagnostic failures in production environments revealed important limitations and 
opportunities for refinement. One failure case involved a gradual memory leak that 
progressed over multiple days, with symptom manifestation occurring long after the causal 
code deployment event. The framework's time window configuration, optimized for detecting 
acute failures with rapid onset, proved inadequate for correlating slowly accumulating 
symptoms with distant causal events. A second failure occurred during a major version 
upgrade that altered system topology and dependency patterns, causing the framework's 
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learned dependency model to become temporarily stale until sufficient observation data 
accumulated to reflect the new architecture. The third failure involved a sophisticated bug in 
transaction reconciliation logic that manifested symptoms primarily in business metrics 
rather than technical infrastructure measurements, highlighting the need for deeper 
integration of financial domain semantics into anomaly detection algorithms. Behavioral 
analysis of correct diagnoses revealed interesting patterns in how the framework navigated 
diagnostic complexity. In scenarios involving database connection pool exhaustion, the 
hierarchical dependency model successfully distinguished between the underlying resource 
constraint and multiple downstream service timeouts that initially appeared as equally 
plausible root cause candidates. The framework correctly traced symptoms backward 
through the service dependency layer to identify resource-level anomalies in database server 
metrics, demonstrating the value of multi-granularity analysis for penetrating abstraction 
layers that obscure causality relationships. Operator feedback from incident responders 
provided qualitative validation of the framework's utility in production troubleshooting 
workflows. Incident response teams reported that ranked root cause lists substantially 
accelerated diagnostic processes compared to manual log analysis, particularly during high-
stress situations involving customer-impacting outages. The explanatory outputs generated 
by the framework, including visualizations of inferred fault propagation paths and supporting 
evidence from correlated metrics, enhanced operator confidence in diagnostic conclusions 
and facilitated more effective communication with development teams responsible for 
implementing corrective measures. The framework's handling of financial transaction-specific 
fault scenarios demonstrated the value of domain-aware diagnostic capabilities. In one 
incident involving payment authorization failures caused by elevated latency in fraud 
detection services, the framework correctly identified the root cause despite complex 
interactions with circuit breaker protection mechanisms that masked direct causal 
relationships. The transaction-aware correlation analysis recognized characteristic patterns 
in authorization approval rates and flagged upstream fraud detection services as suspect 
based on domain knowledge about typical service dependencies in payment processing 
workflows. This capability illustrated how incorporating financial domain semantics enhances 
diagnostic accuracy beyond what purely technical metrics could achieve. Scalability 
assessment examined framework performance as the monitored system grew in complexity 
through addition of new microservices and infrastructure components. Measurements of 
dependency graph construction time, anomaly detection latency, and root cause localization 
duration demonstrated approximately linear scaling characteristics up to monitoring 
configurations encompassing 150 service instances and 500 infrastructure components. 
Beyond this scale, the framework exhibited gradual performance degradation attributable to 
increased graph traversal complexity and higher-dimensional feature spaces for anomaly 
detection. These scalability characteristics suggest the framework remains practical for 
medium to large financial transaction systems while potentially requiring architectural 
optimizations such as graph partitioning or federated deployment models to support 
extremely large-scale deployments. 

5. Conclusion 

This research presented a multi-granularity dependency modeling framework for automated 
fault triage in high-throughput financial transaction systems, addressing critical challenges in 
diagnosing failures across complex distributed architectures. The hierarchical approach 
simultaneously captures service-level interactions and resource-level dependencies, enabling 
more accurate root cause identification compared to flat dependency models that operate at 
single levels of abstraction. Experimental validation demonstrated that the framework 
achieves 92% precision in controlled fault injection scenarios and 85% accuracy on real 
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production incidents, substantially outperforming baseline diagnostic approaches while 
maintaining sub-second response times suitable for real-time operational use. The integration 
of multiple diagnostic techniques including dynamic dependency discovery, causal inference-
based fault propagation modeling, ensemble anomaly detection, and graph-based root cause 
localization creates a comprehensive solution that addresses diverse failure modes 
encountered in financial transaction processing. The framework's ability to reason about fault 
propagation across architectural layers proves particularly valuable in disambiguating 
complex cascading failures where symptoms manifest far from their originating causes. 
Transaction-aware correlation analysis and domain-specific fault mapping taxonomies 
demonstrate how incorporating financial sector knowledge enhances diagnostic capabilities 
beyond generic distributed systems approaches. Practical deployment experiences revealed 
both strengths and limitations of the proposed methodology. The framework excels at 
diagnosing acute failures with rapid symptom onset and clear causal relationships, 
substantially accelerating incident response workflows compared to manual diagnostic 
processes. However, challenges remain in handling slowly evolving faults with extended 
temporal delays between causes and effects, adapting to rapidly changing system topologies 
during major upgrades, and maintaining diagnostic accuracy in scenarios involving multiple 
concurrent independent failures. These limitations suggest valuable directions for future 
research including temporal windowing strategies for gradual failure modes, online learning 
techniques for adapting to system evolution, and multi-hypothesis tracking for concurrent 
fault scenarios. The broader implications of this work extend beyond immediate applications 
in financial services to encompass general distributed systems reliability engineering. The 
hierarchical dependency modeling paradigm offers a reusable architectural pattern applicable 
to other domains characterized by layered abstractions and complex failure modes, including 
telecommunications infrastructure, e-commerce platforms, and cloud-native application 
architectures. The demonstrated benefits of multi-granularity analysis suggest that future 
diagnostic frameworks should move beyond single-level dependency models toward richer 
representations that capture system behavior across multiple abstraction layers. Future 
research directions include extending the framework to support predictive fault detection by 
identifying leading indicators that precede full symptom manifestation, enabling proactive 
intervention before customer impacts occur. Integration with automated remediation systems 
represents another promising avenue, where diagnostic outputs trigger self-healing actions 
such as service restarts, traffic rerouting, or resource reallocation without human 
intervention. Enhanced support for financial domain semantics through deeper modeling of 
transaction lifecycles, regulatory compliance requirements, and business impact metrics 
would further improve diagnostic relevance for financial services applications. Finally, 
exploration of federated deployment architectures could address scalability limitations for 
extremely large-scale systems by partitioning dependency graphs across multiple diagnostic 
instances while maintaining global coherence through inter-instance coordination protocols. 
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