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Abstract 

The advent of immune checkpoint inhibitors has revolutionized the landscape of 
oncological treatment, particularly for solid tumors such as melanoma and non-small 
cell lung cancer. However, the efficacy of these therapies remains heterogeneous, with 
a significant fraction of patients failing to exhibit a durable objective response. 
Traditional biomarkers, including PD-L1 expression levels and tumor mutational 
burden, lack the requisite sensitivity and specificity to accurately stratify patients in a 
clinical setting. This paper proposes a comprehensive multi-modal deep learning 
framework designed to predict the therapeutic efficacy of immune checkpoint 
inhibitors by integrating whole slide histopathology images, genomic sequencing data, 
and baseline clinical demographics. By employing a late-fusion architecture that 
utilizes attention mechanisms to weigh the relative importance of distinct modalities, 
the proposed model captures the complex non-linear interactions between the tumor 
microenvironment and the host immune system. Experimental results on a large-scale 
retrospective cohort demonstrate that this multi-modal approach significantly 
outperforms unimodal baselines and current standard-of-care biomarkers. The study 
provides a pathway toward precision immuno-oncology, highlighting the critical role of 
artificial intelligence in deciphering the biological heterogeneity of cancer response 
mechanisms. 
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1 Introduction 

The introduction of immunotherapy, specifically agents targeting the programmed cell death 
protein 1 (PD-1) and its ligand (PD-L1), along with cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4), has fundamentally altered the therapeutic paradigm for advanced malignancies. 
Unlike cytotoxic chemotherapy or targeted kinase inhibitors, immune checkpoint inhibitors 
function by reinvigorating the host immune system to recognize and eliminate neoplastic 
cells. Despite the remarkable success observed in subsets of patients with melanoma, renal 
cell carcinoma, and non-small cell lung cancer, the majority of patients do not derive clinical 
benefit. Approximately seventy to eigh ty percent of patients across various indications fail to 
respond, exposing them to potential immune-related adverse events and significant financial 
toxicity without therapeutic gain [1]. Consequently, the identification of robust predictive 
biomarkers remains one of the most pressing challenges in contemporary oncology.Current 
clinical practice largely relies on immunohistochemical assessment of PD-L1 expression and 
the evaluation of tumor mutational burden. While these metrics are correlated with response, 
they are imperfect predictors. PD-L1 expression is dynamic and spatially heterogeneous, 
leading to sampling errors, while high tumor mutational burden does not universally 
guarantee immunogenicity. This diagnostic gap necessitates the development of more 
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sophisticated predictive tools that can integrate the multifaceted determinants of immune 
response, which include tumor neoantigen load, the spatial architecture of tumor-infiltrating 
lymphocytes, and the systemic immune state of the patient [2].Artificial intelligence, 
particularly deep learning, offers a potent methodology for extracting sub-visual features 
from complex biomedical data. In recent years, convolutional neural networks have 
demonstrated human-level performance in diagnostic pathology, while transformer-based 
architectures have revolutionized the interpretation of sequential genomic data. However, 
most existing computational approaches operate in a unimodal fashion, analyzing either 
histology or genomics in isolation. This reductionist approach fails to capture the synergy 
between the phenotypic manifestation of the tumor and its underlying genotypic drivers. The 
premise of this research is that a multi-modal deep learning system, which synthesizes 
information across biological scales, can achieve superior predictive accuracy for immune 
checkpoint inhibitor efficacy compared to single-modality models. 

2. Related Work 

The application of machine learning to oncology has evolved rapidly from feature-engineering 
based approaches to end-to-end deep learning systems. Initial efforts focused on the analysis 
of tabular clinical data using random forests and support vector machines to predict survival 
outcomes. However, the limitations of structured clinical data in capturing the biological 
complexity of tumors led to the integration of high-dimensional omics and imaging data. 

2.1 Unimodal Deep Learning in Oncology 

In the domain of computational pathology, whole slide imaging has served as a rich source of 
information. Convolutional neural networks have been extensively utilized to detect tumor 
regions, grade malignancies, and predict genetic mutations directly from morphological 
patterns. Recent studies have shown that deep learning models can quantify the density and 
spatial distribution of tumor-infiltrating lymphocytes on hematoxylin and eosin stained slides, 
a feature strongly associated with immunotherapy response [3]. Similarly, in the genomic 
domain, deep learning models applied to RNA-sequencing data have successfully identified 
gene expression signatures indicative of an inflamed tumor microenvironment. Despite these 
successes, unimodal models are inherently limited by the scope of their input data. A model 
based solely on histology may miss critical driver mutations that dictate resistance, whereas a 
genomic model may fail to account for the spatial exclusion of immune cells, a phenomenon 
known as the immune-desert phenotype [4]. 

2.2 Multimodal Integration Strategies 

To overcome the limitations of unimodal analysis, researchers have begun to explore multi-
modal fusion strategies. These strategies generally fall into three categories: early fusion, 
intermediate fusion, and late fusion. Early fusion involves concatenating raw data or low-level 
features, which is often problematic due to the high dimensionality and differing data 
distributions of images and sequences. Intermediate fusion allows for the joint learning of 
feature representations, often through shared hidden layers. Late fusion, which aggregates the 
predictions or high-level embeddings of independent sub-networks, has shown the most 
promise in biomedical applications due to its flexibility and modularity. Recent literature 
suggests that attention-based fusion mechanisms, which dynamically assign weights to 
different modalities for each patient, can effectively manage the heterogeneity of cancer data 
and manage missing data modalities, a common occurrence in clinical datasets [5]. 
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3. Methodology 

The proposed framework utilizes a tripartite architecture designed to process whole slide 
images, genomic sequences, and clinical data in parallel branches, followed by an attention-
based fusion module. This section details the data acquisition, preprocessing steps, and the 
specific neural network architectures employed. 

3.1 Data Acquisition and Preprocessing 

The dataset for this study was derived from a retrospective consolidation of three large-scale 
immunotherapy trials and publicly available data from The Cancer Genome Atlas. The cohort 
consists of patients diagnosed with metastatic melanoma and non-small cell lung cancer who 
received anti-PD-1 or anti-PD-L1 monotherapy. The primary endpoint for prediction was the 
objective response, defined according to the Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1.Histopathology data consisted of formalin-fixed paraffin-embedded 
whole slide images stained with hematoxylin and eosin. Due to the gigapixel resolution of 
these images, a preprocessing pipeline was implemented to segment tissue from background. 
The tissue regions were tessellated into non-overlapping patches of 256 by 256 pixels at 20x 
magnification. Color normalization was applied to mitigate stain variability between different 
laboratory sites [6].Genomic data included whole-exome sequencing and RNA-sequencing 
derived transcript counts. For mutation data, we filtered for non-synonymous somatic 
mutations and generated a binary vector representing the presence or absence of mutations 
in a panel of 500 cancer-related genes. Transcriptomic data was log-transformed and 
normalized using the upper quartile method. Clinical data included age, sex, ECOG 
performance status, and lactate dehydrogenase levels, which were normalized to zero mean 
and unit variance. 

3.2 Model Architecture 

The multi-modal architecture is composed of three feature extraction arms. For the histology 
arm, we employed a ResNet-50 backbone pre-trained on ImageNet. To handle the multiple 
patches generated from a single patient, we utilized a multiple instance learning approach 
where feature vectors from all patches are aggregated via a gated attention mechanism to 
produce a single slide-level embedding.For the genomic arm, a self-attention based 
Transformer encoder was utilized to process the gene expression profiles and mutation 
vectors. This allows the model to capture long-range dependencies and interactions between 
different genetic pathways. The clinical data was processed using a multi-layer perceptron to 
map the scalar inputs into a high-dimensional latent space compatible with the other 
modalities.The core innovation of this framework lies in the multi-modal fusion layer. Rather 
than simple concatenation, we implemented a context-aware attention fusion mechanism. 
This mechanism calculates an attention score for each modality embedding, effectively 
allowing the network to prioritize the most informative data source for a given patient. For 
instance, in a patient with a high mutational burden but ambiguous histology, the model may 
assign higher weight to the genomic embedding. The integration logic is formally defined in 
the subsequent code listing. 

Code Listing 1: Attention-Based Fusion Layer Implementation 
import torch 

import torch.nn as nn 

import torch.nn.functional as F 

 

class MultiModalAttentionFusion(nn.Module): 
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    def __init__(self, dim_image, dim_genomic, dim_clinical, common_dim): 

        super(MultiModalAttentionFusion, self).__init__() 

        # Project all modalities to a common dimension 

        self.img_proj = nn.Linear(dim_image, common_dim) 

        self.gen_proj = nn.Linear(dim_genomic, common_dim) 

        self.cli_proj = nn.Linear(dim_clinical, common_dim) 

         

        # Attention mechanism 

        self.attention_weights = nn.Linear(common_dim, 1) 

         

        # Final classifier 

        self.classifier = nn.Sequential( 

            nn.Linear(common_dim, 64), 

            nn.ReLU(), 

            nn.Linear(64, 1), 

            nn.Sigmoid() 

        ) 

 

    def forward(self, img_feat, gen_feat, cli_feat): 

        # Project features 

        h_img = torch.tanh(self.img_proj(img_feat)) 

        h_gen = torch.tanh(self.gen_proj(gen_feat)) 

        h_cli = torch.tanh(self.cli_proj(cli_feat)) 

         

        # Stack features: [Batch, 3, Common_Dim] 

        stacked = torch.stack([h_img, h_gen, h_cli], dim=1) 

         

        # Calculate attention scores 

        attn_scores = self.attention_weights(stacked) # [Batch, 3, 1] 

        attn_weights = F.softmax(attn_scores, dim=1) 

         

        # Weighted sum 

        fused_vector = torch.sum(stacked * attn_weights, dim=1) 

         

        # Classification 

        prediction = self.classifier(fused_vector) 

        return prediction, attn_weights 

The fused feature vector is subsequently passed through a fully connected classification head 
to output the probability of response. The entire network was trained end-to-end using a 
binary cross-entropy loss function, with the exception of the frozen image backbone layers 
which were fine-tuned only in the final epochs. 
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4. Experimental Setup 

The experimental validation was designed to rigorously test the hypothesis that multi-modal 
integration yields superior predictive performance. We partitioned the dataset into training, 
validation, and independent test sets with a ratio of 70:10:20, stratified by tumor type and 
response status to ensure balanced class distributions. 

4.1 Dataset Description and Partitioning 

The final consolidated dataset comprised 1,240 patients. Of these, 450 were responders and 
790 were non-responders, reflecting the typical clinical response rates of immune checkpoint 
inhibitors. The validation set was used for hyperparameter optimization, including learning 
rate scheduling, batch size selection, and regularization strength (dropout and weight decay) 
to prevent overfitting. To address class imbalance, we employed random oversampling of the 
minority class (responders) during the training phase. 

4.2 Evaluation Metrics 

Model performance was evaluated using the Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC), Area Under the Precision-Recall Curve (AUC-PR), Accuracy, and F1-Score. 
Given the clinical context, sensitivity (Recall) was prioritized to minimize false negatives, as 
failing to identify a potential responder could deny a patient life-saving therapy. We also 
calculated the 95 percent confidence intervals for these metrics using bootstrapping with 
1,000 resamples to ensure statistical significance [7]. 

5. Results and Discussion 

The experimental results provide compelling evidence supporting the efficacy of the proposed 
multi-modal deep learning framework. We compared our full model against three unimodal 
baselines: an Image-Only model (utilizing only the ResNet-50 backbone), a Genomic-Only 
model (utilizing only the Transformer encoder), and a Clinical-Only model (logistic regression 
on demographic factors). 

5.1 Performance Analysis 

As illustrated in Table 1, the Multi-Modal Fusion model achieved the highest performance 
across all evaluated metrics. The Clinical-Only model performed poorly, reinforcing the 
understanding that baseline demographics are insufficient for predicting immunotherapy 
response. The Image-Only and Genomic-Only models demonstrated moderate predictive 
power, with the Genomic model slightly outperforming the Image model, likely due to the 
strong predictive value of tumor mutational burden and interferon-gamma signatures 
contained within the sequencing data. However, the Multi-Modal model demonstrated a 
statistically significant improvement over the best unimodal baseline. 

Table 1: Comparative Performance Metrics of Unimodal and Multi-Modal Models 

Model 
Architecture 

AUC-ROC (95% 
CI) 

Accuracy F1-Score Sensitivity Specificity 

Clinical-Only 
Baseline 

0.62 (0.58-
0.66) 

0.58 0.45 0.41 0.68 

Image-Only 
(WSI) 

0.74 (0.71-
0.77) 

0.69 0.61 0.58 0.76 

Genomic-Only 
(RNA+DNA) 

0.78 (0.75-
0.81) 

0.73 0.66 0.64 0.79 
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**Multi-Modal 
Fusion** 

**0.86 (0.83-
0.89)** 

**0.81** **0.76** **0.78** **0.83** 

The superior performance of the fusion model suggests that the information contained in 
histology and genomics is complementary rather than redundant. For example, while 
genomics can identify the presence of neoantigens, histology provides the spatial context of 
whether immune cells are physically capable of contacting the tumor cells. This synergy 
allows the multi-modal model to correctly classify patients that unimodal models misclassify. 
The ROC curves presented in Figure 1 further visualize this separation in performance. 

 
Figure 1: Receiver Operating Characteristic Curves 

It is notable that the improvement in sensitivity (0.78 vs 0.64 for the genomic model) is 
particularly relevant for clinical translation. In the context of oncology, high sensitivity 
ensures that the maximum number of potential responders are identified for treatment. The 
results align with recent findings in the field which suggest that deep learning models can 
effectively synthesize heterogeneous data streams to improve prognostic stratification [8]. 

5.2 Ablation Studies and Interpretability 

To further validate the architecture, we conducted ablation studies focusing on the attention 
mechanism. Replacing the attention-based fusion with simple vector concatenation resulted 
in a decrease in AUC-ROC from 0.86 to 0.82, indicating that the dynamic weighting of 
modalities is a crucial component of the system. We analyzed the attention weights generated 
by the model and found that for patients with available tumor mutational burden data but 
poor quality tissue samples (e.g., significant necrosis or artifacts), the model automatically 
assigned higher weights to the genomic branch [9].Interpretability is a critical requirement 
for the adoption of AI in clinical practice. We utilized gradient-weighted class activation 
mapping (Grad-CAM) to visualize the regions of the whole slide images that the model focused 
on. The heatmaps consistently highlighted the interface between the tumor and the stroma, 
specifically regions dense with lymphocytes. This morphological finding correlates with the 
biological understanding that "hot" tumors (those with immune infiltration) are more likely to 
respond to checkpoint blockade. Furthermore, an analysis of the genomic attention weights 
revealed that the model placed high importance on genes related to antigen presentation 
(HLA pathways) and interferon signaling [10]. 
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Table 2: Feature Importance Analysis - Top Contributing Features by Modality 

Rank Feature Modality Specific Feature Biological Relevance 

1 Genomic (RNA-Seq) CD274 (PD-L1) 
Expression 

Direct target of 
therapy 

2 Histology (WSI) TIL Density at Invasive 
Margin 

Indicator of active 
immune response 

3 Genomic (Mutation) Tumor Mutational 
Burden 

Proxy for neoantigen 
load 

4 Histology (WSI) Tumor-Stroma Ratio Structural barrier to 
immune infiltration 

5 Genomic (RNA-Seq) CXCL9 Expression Chemokine for T-cell 
recruitment 

The ranking of features in Table 2 confirms that the model is learning biologically plausible 
associations. The high ranking of CD274 expression and TIL density confirms that the deep 
learning model has rediscovered known biomarkers without explicit programming, while also 
integrating more complex features like the tumor-stroma ratio [11]. 

6. Clinical Implications and Challenges 

The development of robust predictive models for immunotherapy has immediate clinical 
relevance. The current "trial and error" approach to prescribing immune checkpoint 
inhibitors is inefficient and costly. A tool capable of predicting response with high accuracy 
could assist oncologists in making more informed treatment decisions, potentially sparing 
non-responders from toxicity and directing them toward alternative clinical trials or 
combination therapies. 

6.1 Translation to Clinical Practice 

Implementing such a multi-modal system in a real-world clinical workflow presents several 
logistical challenges. First, the requirement for comprehensive genomic sequencing (whole 
exome and RNA-seq) is not yet standard of care in all medical centers due to cost and 
turnaround time. However, as the cost of sequencing continues to decline, the feasibility of 
collecting this data routinely improves. Second, the computational infrastructure required to 
process gigapixel pathology images and high-dimensional genomic data is significant. Cloud-
based deployment or edge computing solutions within hospital firewalls will be necessary to 
facilitate widespread adoption [12].Furthermore, the model must be validated on diverse 
cohorts to ensure generalizability across different ethnicities and geographic regions. Bias in 
training data is a pervasive issue in medical AI, and it is imperative that future work focuses 
on curating datasets that are representative of the global patient population. Federated 
learning approaches, which allow models to be trained across multiple institutions without 
sharing raw patient data, offer a promising solution to the data privacy and diversity 
challenges [13]. 

6.2 Interpretability and Ethical Considerations 

While the "black box" nature of deep learning is often cited as a barrier to adoption, the use of 
attention mechanisms and saliency maps in this study demonstrates that these models can be 
made interpretable. Physicians must be able to verify that the model's prediction is based on 
sound biological features rather than artifacts. For example, ensuring that the image model is 
looking at tumor cells and not marker ink on the slide is a basic but essential validation step. 
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Figure 2 illustrates the interpretability of the model, showing a heat-map overlay on a 
histological slide where the red regions indicate high contribution to the positive response 
prediction. 

 
Figure 2: Attention Heatmap Visualization 

From an ethical standpoint, the use of AI in prognostication raises questions regarding 
accountability. If a model predicts a lack of response, should a patient be denied a potentially 
life-saving drug? It is the stance of this paper that such models should serve as decision 
support tools rather than autonomous decision-makers. The final therapeutic decision must 
remain with the clinician, who integrates the AI prediction with their clinical judgment and 
the patient's values. 

Conclusion 

This study presents a novel multi-modal deep learning framework for predicting the efficacy 
of immune checkpoint inhibitors in targeted oncology. By integrating whole slide imaging, 
genomic profiling, and clinical data, the proposed model achieves significantly higher 
predictive accuracy than current standard-of-care biomarkers or unimodal deep learning 
approaches. The use of attention-based fusion allows the model to dynamically weight the 
importance of different data streams, capturing the complex biological interactions that 
determine immune response.Our findings underscore the potential of artificial intelligence to 
unravel the complexity of the tumor microenvironment and drive the field toward true 
precision immuno-oncology. Future work will focus on integrating additional modalities, such 
as radiomics from CT and MRI scans, and validating the framework in prospective clinical 
trials. As multi-modal datasets become more prevalent, approaches similar to the one 
described here will likely become indispensable tools in the oncologist's arsenal, ultimately 
improving patient outcomes and optimizing healthcare resource allocation [14]. 
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