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Abstract

The advent of immune checkpoint inhibitors has revolutionized the landscape of
oncological treatment, particularly for solid tumors such as melanoma and non-small
cell lung cancer. However, the efficacy of these therapies remains heterogeneous, with
a significant fraction of patients failing to exhibit a durable objective response.
Traditional biomarkers, including PD-L1 expression levels and tumor mutational
burden, lack the requisite sensitivity and specificity to accurately stratify patients in a
clinical setting. This paper proposes a comprehensive multi-modal deep learning
framework designed to predict the therapeutic efficacy of immune checkpoint
inhibitors by integrating whole slide histopathology images, genomic sequencing data,
and baseline clinical demographics. By employing a late-fusion architecture that
utilizes attention mechanisms to weigh the relative importance of distinct modalities,
the proposed model captures the complex non-linear interactions between the tumor
microenvironment and the host immune system. Experimental results on a large-scale
retrospective cohort demonstrate that this multi-modal approach significantly
outperforms unimodal baselines and current standard-of-care biomarkers. The study
provides a pathway toward precision immuno-oncology, highlighting the critical role of
artificial intelligence in deciphering the biological heterogeneity of cancer response
mechanisms.
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1 Introduction

The introduction of immunotherapy, specifically agents targeting the programmed cell death
protein 1 (PD-1) and its ligand (PD-L1), along with cytotoxic T-lymphocyte-associated protein
4 (CTLA-4), has fundamentally altered the therapeutic paradigm for advanced malignancies.
Unlike cytotoxic chemotherapy or targeted kinase inhibitors, immune checkpoint inhibitors
function by reinvigorating the host immune system to recognize and eliminate neoplastic
cells. Despite the remarkable success observed in subsets of patients with melanoma, renal
cell carcinoma, and non-small cell lung cancer, the majority of patients do not derive clinical
benefit. Approximately seventy to eigh ty percent of patients across various indications fail to
respond, exposing them to potential immune-related adverse events and significant financial
toxicity without therapeutic gain [1]. Consequently, the identification of robust predictive
biomarkers remains one of the most pressing challenges in contemporary oncology.Current
clinical practice largely relies on immunohistochemical assessment of PD-L1 expression and
the evaluation of tumor mutational burden. While these metrics are correlated with response,
they are imperfect predictors. PD-L1 expression is dynamic and spatially heterogeneous,
leading to sampling errors, while high tumor mutational burden does not universally
guarantee immunogenicity. This diagnostic gap necessitates the development of more
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sophisticated predictive tools that can integrate the multifaceted determinants of immune
response, which include tumor neoantigen load, the spatial architecture of tumor-infiltrating
lymphocytes, and the systemic immune state of the patient [2].Artificial intelligence,
particularly deep learning, offers a potent methodology for extracting sub-visual features
from complex biomedical data. In recent years, convolutional neural networks have
demonstrated human-level performance in diagnostic pathology, while transformer-based
architectures have revolutionized the interpretation of sequential genomic data. However,
most existing computational approaches operate in a unimodal fashion, analyzing either
histology or genomics in isolation. This reductionist approach fails to capture the synergy
between the phenotypic manifestation of the tumor and its underlying genotypic drivers. The
premise of this research is that a multi-modal deep learning system, which synthesizes
information across biological scales, can achieve superior predictive accuracy for immune
checkpoint inhibitor efficacy compared to single-modality models.

2. Related Work

The application of machine learning to oncology has evolved rapidly from feature-engineering
based approaches to end-to-end deep learning systems. Initial efforts focused on the analysis
of tabular clinical data using random forests and support vector machines to predict survival
outcomes. However, the limitations of structured clinical data in capturing the biological
complexity of tumors led to the integration of high-dimensional omics and imaging data.

2.1 Unimodal Deep Learning in Oncology

In the domain of computational pathology, whole slide imaging has served as a rich source of
information. Convolutional neural networks have been extensively utilized to detect tumor
regions, grade malignancies, and predict genetic mutations directly from morphological
patterns. Recent studies have shown that deep learning models can quantify the density and
spatial distribution of tumor-infiltrating lymphocytes on hematoxylin and eosin stained slides,
a feature strongly associated with immunotherapy response [3]. Similarly, in the genomic
domain, deep learning models applied to RNA-sequencing data have successfully identified
gene expression signatures indicative of an inflamed tumor microenvironment. Despite these
successes, unimodal models are inherently limited by the scope of their input data. A model
based solely on histology may miss critical driver mutations that dictate resistance, whereas a
genomic model may fail to account for the spatial exclusion of immune cells, a phenomenon
known as the immune-desert phenotype [4].

2.2 Multimodal Integration Strategies

To overcome the limitations of unimodal analysis, researchers have begun to explore multi-
modal fusion strategies. These strategies generally fall into three categories: early fusion,
intermediate fusion, and late fusion. Early fusion involves concatenating raw data or low-level
features, which is often problematic due to the high dimensionality and differing data
distributions of images and sequences. Intermediate fusion allows for the joint learning of
feature representations, often through shared hidden layers. Late fusion, which aggregates the
predictions or high-level embeddings of independent sub-networks, has shown the most
promise in biomedical applications due to its flexibility and modularity. Recent literature
suggests that attention-based fusion mechanisms, which dynamically assign weights to
different modalities for each patient, can effectively manage the heterogeneity of cancer data
and manage missing data modalities, a common occurrence in clinical datasets [5].
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3. Methodology

The proposed framework utilizes a tripartite architecture designed to process whole slide
images, genomic sequences, and clinical data in parallel branches, followed by an attention-
based fusion module. This section details the data acquisition, preprocessing steps, and the
specific neural network architectures employed.

3.1 Data Acquisition and Preprocessing

The dataset for this study was derived from a retrospective consolidation of three large-scale
immunotherapy trials and publicly available data from The Cancer Genome Atlas. The cohort
consists of patients diagnosed with metastatic melanoma and non-small cell lung cancer who
received anti-PD-1 or anti-PD-L1 monotherapy. The primary endpoint for prediction was the
objective response, defined according to the Response Evaluation Criteria in Solid Tumors
(RECIST) version 1.1.Histopathology data consisted of formalin-fixed paraffin-embedded
whole slide images stained with hematoxylin and eosin. Due to the gigapixel resolution of
these images, a preprocessing pipeline was implemented to segment tissue from background.
The tissue regions were tessellated into non-overlapping patches of 256 by 256 pixels at 20x
magnification. Color normalization was applied to mitigate stain variability between different
laboratory sites [6].Genomic data included whole-exome sequencing and RNA-sequencing
derived transcript counts. For mutation data, we filtered for non-synonymous somatic
mutations and generated a binary vector representing the presence or absence of mutations
in a panel of 500 cancer-related genes. Transcriptomic data was log-transformed and
normalized using the upper quartile method. Clinical data included age, sex, ECOG
performance status, and lactate dehydrogenase levels, which were normalized to zero mean
and unit variance.

3.2 Model Architecture

The multi-modal architecture is composed of three feature extraction arms. For the histology
arm, we employed a ResNet-50 backbone pre-trained on ImageNet. To handle the multiple
patches generated from a single patient, we utilized a multiple instance learning approach
where feature vectors from all patches are aggregated via a gated attention mechanism to
produce a single slide-level embedding.For the genomic arm, a self-attention based
Transformer encoder was utilized to process the gene expression profiles and mutation
vectors. This allows the model to capture long-range dependencies and interactions between
different genetic pathways. The clinical data was processed using a multi-layer perceptron to
map the scalar inputs into a high-dimensional latent space compatible with the other
modalities.The core innovation of this framework lies in the multi-modal fusion layer. Rather
than simple concatenation, we implemented a context-aware attention fusion mechanism.
This mechanism calculates an attention score for each modality embedding, effectively
allowing the network to prioritize the most informative data source for a given patient. For
instance, in a patient with a high mutational burden but ambiguous histology, the model may
assign higher weight to the genomic embedding. The integration logic is formally defined in
the subsequent code listing.

Code Listing 1: Attention-Based Fusion Layer Implementation
import torch

import torch.nn as nn

import torch.nn.functional as F

class MultiModalAttentionFusion (nn.Module) :
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def init (self, dim image, dim genomic, dim clinical, common dim) :

super (MultiModalAttentionFusion, self). init ()

# Project all modalities to a common dimension

self.img proj = nn.Linear (dim image, common_ dim)
self.gen proj = nn.Linear (dim genomic, common_ dim)
self.cli proj = nn.Linear (dim clinical, common dim)

# Attention mechanism

self.attention weights = nn.Linear (common dim, 1)

# Final classifier
self.classifier = nn.Sequential (
nn.Linear (common dim, 64),
nn.RelLU(),
nn.Linear (64, 1),

nn.Sigmoid ()

def forward(self, img feat, gen feat, cli feat):
# Project features
h img = torch.tanh(self.img proj (img feat))
h gen = torch.tanh(self.gen proj(gen feat))
h cli = torch.tanh(self.cli proj(cli feat))

# Stack features: [Batch, 3, Common Dim]

stacked = torch.stack([h img, h gen, h cli], dim=1)

# Calculate attention scores
attn scores = self.attention weights (stacked) # [Batch,

attn weights = F.softmax(attn scores, dim=1)

# Weighted sum

fused vector = torch.sum(stacked * attn weights, dim=1)

# Classification
prediction = self.classifier (fused vector)

return prediction, attn weights

3, 1]

The fused feature vector is subsequently passed through a fully connected classification head
to output the probability of response. The entire network was trained end-to-end using a
binary cross-entropy loss function, with the exception of the frozen image backbone layers

which were fine-tuned only in the final epochs.
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4. Experimental Setup

The experimental validation was designed to rigorously test the hypothesis that multi-modal
integration yields superior predictive performance. We partitioned the dataset into training,
validation, and independent test sets with a ratio of 70:10:20, stratified by tumor type and
response status to ensure balanced class distributions.

4.1 Dataset Description and Partitioning

The final consolidated dataset comprised 1,240 patients. Of these, 450 were responders and
790 were non-responders, reflecting the typical clinical response rates of immune checkpoint
inhibitors. The validation set was used for hyperparameter optimization, including learning
rate scheduling, batch size selection, and regularization strength (dropout and weight decay)
to prevent overfitting. To address class imbalance, we employed random oversampling of the
minority class (responders) during the training phase.

4.2 Evaluation Metrics

Model performance was evaluated using the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC), Area Under the Precision-Recall Curve (AUC-PR), Accuracy, and F1-Score.
Given the clinical context, sensitivity (Recall) was prioritized to minimize false negatives, as
failing to identify a potential responder could deny a patient life-saving therapy. We also
calculated the 95 percent confidence intervals for these metrics using bootstrapping with
1,000 resamples to ensure statistical significance [7].

5. Results and Discussion

The experimental results provide compelling evidence supporting the efficacy of the proposed
multi-modal deep learning framework. We compared our full model against three unimodal
baselines: an Image-Only model (utilizing only the ResNet-50 backbone), a Genomic-Only
model (utilizing only the Transformer encoder), and a Clinical-Only model (logistic regression
on demographic factors).

5.1 Performance Analysis

As illustrated in Table 1, the Multi-Modal Fusion model achieved the highest performance
across all evaluated metrics. The Clinical-Only model performed poorly, reinforcing the
understanding that baseline demographics are insufficient for predicting immunotherapy
response. The Image-Only and Genomic-Only models demonstrated moderate predictive
power, with the Genomic model slightly outperforming the Image model, likely due to the
strong predictive value of tumor mutational burden and interferon-gamma signatures
contained within the sequencing data. However, the Multi-Modal model demonstrated a
statistically significant improvement over the best unimodal baseline.

Table 1: Comparative Performance Metrics of Unimodal and Multi-Modal Models

Model AUC-ROC (95% Accuracy F1-Score Sensitivity Specificity
Architecture  CI)

Clinical-Only 0.62 (0.58-0.58 0.45 0.41 0.68
Baseline 0.66)

Image-Only  0.74 (0.71-0.69 0.61 0.58 0.76
(WSI) 0.77)

Genomic-Only 0.78 (0.75-0.73 0.66 0.64 0.79

(RNA+DNA)  0.81)
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**Multi-Modal **0.86  (0.83-**0.81** **0.76** **0.78%* **0.83**
Fusion** 0.89)**

The superior performance of the fusion model suggests that the information contained in
histology and genomics is complementary rather than redundant. For example, while
genomics can identify the presence of neoantigens, histology provides the spatial context of
whether immune cells are physically capable of contacting the tumor cells. This synergy
allows the multi-modal model to correctly classify patients that unimodal models misclassify.
The ROC curves presented in Figure 1 further visualize this separation in performance.

Figure 1: Receiver On Coccecrtantic Curves
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Figure 1: Receiver Operating Characteristic Curves

It is notable that the improvement in sensitivity (0.78 vs 0.64 for the genomic model) is
particularly relevant for clinical translation. In the context of oncology, high sensitivity
ensures that the maximum number of potential responders are identified for treatment. The
results align with recent findings in the field which suggest that deep learning models can
effectively synthesize heterogeneous data streams to improve prognostic stratification [8].

5.2 Ablation Studies and Interpretability

To further validate the architecture, we conducted ablation studies focusing on the attention
mechanism. Replacing the attention-based fusion with simple vector concatenation resulted
in a decrease in AUC-ROC from 0.86 to 0.82, indicating that the dynamic weighting of
modalities is a crucial component of the system. We analyzed the attention weights generated
by the model and found that for patients with available tumor mutational burden data but
poor quality tissue samples (e.g., significant necrosis or artifacts), the model automatically
assigned higher weights to the genomic branch [9].Interpretability is a critical requirement
for the adoption of Al in clinical practice. We utilized gradient-weighted class activation
mapping (Grad-CAM) to visualize the regions of the whole slide images that the model focused
on. The heatmaps consistently highlighted the interface between the tumor and the stroma,
specifically regions dense with lymphocytes. This morphological finding correlates with the
biological understanding that "hot" tumors (those with immune infiltration) are more likely to
respond to checkpoint blockade. Furthermore, an analysis of the genomic attention weights
revealed that the model placed high importance on genes related to antigen presentation
(HLA pathways) and interferon signaling [10].
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Table 2: Feature Importance Analysis - Top Contributing Features by Modality

Rank Feature Modality Specific Feature Biological Relevance
1 Genomic (RNA-Seq) CD274 (PD-L1)Direct target of
Expression therapy
2 Histology (WSI) TIL Density at Invasivelndicator of active
Margin immune response
3 Genomic (Mutation)  Tumor Mutational Proxy for neoantigen
Burden load
4 Histology (WSI) Tumor-Stroma Ratio  Structural barrier to
immune infiltration
5 Genomic (RNA-Seq)  CXCL9 Expression Chemokine for T-cell
recruitment

The ranking of features in Table 2 confirms that the model is learning biologically plausible
associations. The high ranking of CD274 expression and TIL density confirms that the deep
learning model has rediscovered known biomarkers without explicit programming, while also
integrating more complex features like the tumor-stroma ratio [11].

6. Clinical Implications and Challenges

The development of robust predictive models for immunotherapy has immediate clinical
relevance. The current "trial and error" approach to prescribing immune checkpoint
inhibitors is inefficient and costly. A tool capable of predicting response with high accuracy
could assist oncologists in making more informed treatment decisions, potentially sparing
non-responders from toxicity and directing them toward alternative clinical trials or
combination therapies.

6.1 Translation to Clinical Practice

Implementing such a multi-modal system in a real-world clinical workflow presents several
logistical challenges. First, the requirement for comprehensive genomic sequencing (whole
exome and RNA-seq) is not yet standard of care in all medical centers due to cost and
turnaround time. However, as the cost of sequencing continues to decline, the feasibility of
collecting this data routinely improves. Second, the computational infrastructure required to
process gigapixel pathology images and high-dimensional genomic data is significant. Cloud-
based deployment or edge computing solutions within hospital firewalls will be necessary to
facilitate widespread adoption [12].Furthermore, the model must be validated on diverse
cohorts to ensure generalizability across different ethnicities and geographic regions. Bias in
training data is a pervasive issue in medical Al, and it is imperative that future work focuses
on curating datasets that are representative of the global patient population. Federated
learning approaches, which allow models to be trained across multiple institutions without
sharing raw patient data, offer a promising solution to the data privacy and diversity
challenges [13].

6.2 Interpretability and Ethical Considerations

While the "black box" nature of deep learning is often cited as a barrier to adoption, the use of
attention mechanisms and saliency maps in this study demonstrates that these models can be
made interpretable. Physicians must be able to verify that the model's prediction is based on
sound biological features rather than artifacts. For example, ensuring that the image model is
looking at tumor cells and not marker ink on the slide is a basic but essential validation step.
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Figure 2 illustrates the interpretability of the model, showing a heat-map overlay on a
histological slide where the red regions indicate high contribution to the positive response
prediction.

Figure 2: Attention Heatmap Visualization
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Figure 2: Attention Heatmap Visualization

From an ethical standpoint, the use of Al in prognostication raises questions regarding
accountability. If a model predicts a lack of response, should a patient be denied a potentially
life-saving drug? It is the stance of this paper that such models should serve as decision
support tools rather than autonomous decision-makers. The final therapeutic decision must
remain with the clinician, who integrates the Al prediction with their clinical judgment and
the patient's values.

Conclusion

This study presents a novel multi-modal deep learning framework for predicting the efficacy
of immune checkpoint inhibitors in targeted oncology. By integrating whole slide imaging,
genomic profiling, and clinical data, the proposed model achieves significantly higher
predictive accuracy than current standard-of-care biomarkers or unimodal deep learning
approaches. The use of attention-based fusion allows the model to dynamically weight the
importance of different data streams, capturing the complex biological interactions that
determine immune response.Our findings underscore the potential of artificial intelligence to
unravel the complexity of the tumor microenvironment and drive the field toward true
precision immuno-oncology. Future work will focus on integrating additional modalities, such
as radiomics from CT and MRI scans, and validating the framework in prospective clinical
trials. As multi-modal datasets become more prevalent, approaches similar to the one
described here will likely become indispensable tools in the oncologist's arsenal, ultimately
improving patient outcomes and optimizing healthcare resource allocation [14].
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