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Abstract	
Pediatric	disease	diagnosis	is	often	constrained	by	limited	sample	sizes,	fragmented	data	
distribution,	 and	 strict	 privacy	 requirements	 across	medical	 institutions.	 To	 address	
these	challenges,	this	study	proposes	a	dynamic	weighted	federated	learning	framework	
(DW-FL)	 for	 multi-institutional	 pediatric	 disease	 diagnosis,	 enabling	 collaborative	
model	training	without	sharing	raw	patient	data.	The	proposed	framework	introduces	a	
contribution-aware	aggregation	strategy	that	dynamically	adjusts	client	weights	based	
on	 model	 performance	 and	 data	 characteristics,	 and	 incorporates	 a	 weighted	 loss	
function	 to	 mitigate	 class	 imbalance	 commonly	 observed	 in	 pediatric	 datasets.	
Experiments	conducted	under	both	independent	and	non-independent	data	distribution	
settings	 demonstrate	 that	 the	 proposed	 approach	 achieves	 improved	 diagnostic	
performance	 and	 communication	 efficiency	 compared	 with	 conventional	 federated	
averaging	 methods.	 These	 results	 indicate	 that	 dynamic	 weighting	 mechanisms	 can	
enhance	 the	 robustness	 of	 federated	 learning	 in	 heterogeneous	 pediatric	 scenarios,	
providing	a	feasible	solution	for	privacy-preserving	multi-center	clinical	collaboration.	
Keywords	
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1. Introduction	
Pediatric	 disease	 diagnosis	 increasingly	 relies	 on	 data-driven	 methods	 to	 support	 clinical	
decision-making.	 However,	 compared	with	 adult	 medicine,	 pediatric	 clinical	 data	 are	 often	
limited	in	scale,	highly	fragmented	across	institutions,	and	subject	to	stricter	privacy	and	ethical	
constraints.	These	challenges	are	particularly	pronounced	in	rare	and	low-incidence	diseases,	
where	data	scarcity	and	heterogeneity	restrict	the	robustness	and	clinical	impact	of	machine	
learning	models	 (Amorim	 et	 al.,	 2025).	 In	 response,	 privacy-preserving	 paradigms	 such	 as	
federated	learning	have	been	increasingly	explored	to	enable	cross-institutional	collaboration	
without	 centralized	 data	 sharing,	 especially	 in	 resource-constrained	 public	 health	 settings	
(Borges	et	al.,	2026).	
Multi-center	 collaboration	 is	 widely	 regarded	 as	 an	 effective	 approach	 to	 alleviating	 data	
scarcity	 by	 aggregating	 knowledge	 across	 institutions.	 However,	 traditional	 centralized	
learning	frameworks	require	the	transfer	of	patient-level	data	to	a	shared	repository,	which	is	
often	infeasible	in	healthcare	due	to	regulatory	constraints,	data	governance	requirements,	and	
the	 risk	 of	 privacy	 leakage	 (Rezaei	 et	 al.,	 2025).	 To	 address	 these	 limitations,	 privacy-
preserving	 collaborative	 learning	 paradigms—particularly	 federated	 learning—have	 been	
proposed	to	enable	distributed	model	training	without	sharing	raw	data,	forming	the	basis	for	
secure	collaborative	learning	frameworks	in	sensitive	domains	such	as	healthcare	(Tripathy	et	
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al.,	 2025).	 Nevertheless,	 even	 within	 federated	 settings,	 distributed	 learning	 environments	
remain	 exposed	 to	 security	 threats	 and	potential	 privacy	 leakage,	 highlighting	 the	 need	 for	
robust	protection	mechanisms	to	ensure	trustworthy	collaboration	(Ighofiomoni	et	al.,	2025).	
Federated	 learning	 (FL)	 has	 emerged	 as	 a	 promising	 paradigm	 for	medical	 applications	 by	
enabling	multiple	institutions	to	collaboratively	train	models	without	sharing	raw	patient	data.	
Recent	 surveys	 systematically	 categorize	 FL	 use	 cases	 in	 healthcare,	 highlighting	 its	
effectiveness	in	disease	prediction	and	medical	image	analysis	while	also	identifying	persistent	
challenges	 such	 as	 data	 heterogeneity,	 non-IID	 distributions,	 and	 communication	 overhead	
(Rauniyar	et	al.,	2023).	In	pediatric	healthcare,	machine	learning	adoption	has	grown	rapidly,	
yet	 the	 application	 of	 FL	 remains	 comparatively	 limited,	 largely	 due	 to	 domain-specific	
constraints	including	small	sample	sizes,	stricter	privacy	requirements,	and	the	complexity	of	
pediatric	data	governance	(Ganatra,	2025).	These	factors	suggest	that,	despite	demonstrated	
success	 in	 general	 medical	 domains,	 federated	 learning	 in	 pediatric	 diagnosis	 remains	
underexplored	and	warrants	targeted	methodological	and	empirical	investigation.	
First,	 pediatric	 data	 distributed	 across	 institutions	 are	 often	 non-independent	 and	 non-
identically	distributed	(Non-IID).	Differences	in	patient	demographics,	disease	prevalence,	and	
clinical	protocols	 introduce	substantial	statistical	heterogeneity	among	 local	datasets,	which	
degrades	 the	 convergence,	 performance,	 and	 stability	 of	 conventional	 federated	 learning	
algorithms	 (Lu	 et	 al.,	 2024;	 Karami	 &	 Karami,	 2025).	 Second,	 pediatric	 datasets	 frequently	
suffer	from	severe	class	imbalance,	particularly	in	rare	diseases,	leading	global	models	to	bias	
toward	majority	classes	and	increasing	the	risk	of	missed	or	delayed	diagnoses	(Borazjani	et	al.,	
2024).	Third,	communication	efficiency	represents	a	critical	practical	constraint	in	real-world	
medical	deployments,	as	 federated	 training	must	operate	under	 limited	network	bandwidth	
and	computational	resources,	further	exacerbating	the	challenges	posed	by	heterogeneity	and	
non-IID	data	(Lu	et	al.,	2024;	Annappa	et	al.,	2024).	
Most	existing	federated	learning	(FL)	approaches	rely	on	static	aggregation	strategies,	such	as	
FedAvg	or	FedSGD,	which	weight	client	updates	primarily	by	local	data	volume.	While	effective	
in	relatively	homogeneous	settings,	these	methods	often	fail	to	account	for	variations	in	data	
quality,	representativeness,	and	clinical	relevance	across	institutions,	limiting	their	suitability	
for	 complex	 healthcare	 and	 pediatric	 scenarios	 (Jayaram	 et	 al.,	 2022).	 Recent	 studies	 have	
demonstrated	that	adaptive	aggregation	mechanisms	can	better	address	these	limitations	by	
dynamically	 adjusting	 client	 contributions	 based	 on	 heterogeneity	 and	 learning	 behavior,	
thereby	improving	robustness	and	convergence	in	real-world	medical	applications	(Haripriya	
et	al.,	2025;	Song	et	al.,	2025).	In	parallel,	fairness-	and	stability-aware	aggregation	strategies	
have	been	proposed	to	mitigate	bias	and	ensure	balanced	participation	among	clients,	further	
highlighting	the	need	for	aggregation	designs	that	jointly	consider	heterogeneity,	contribution	
equity,	and	training	stability	in	federated	healthcare	systems	(Ray	Chaudhury	et	al.,	2022).	
To	 address	 these	 challenges,	 this	 study	 proposes	 a	 dynamic	 weighted	 federated	 learning	
framework	 (DW-FL)	 tailored	 to	pediatric	disease	diagnosis.	The	 core	 idea	 is	 to	dynamically	
adjust	aggregation	weights	based	on	client	contribution,	rather	than	relying	solely	on	dataset	
size.	 In	 addition,	 imbalance-aware	 optimization	 strategies	 are	 incorporated	 to	 improve	
sensitivity	 to	 underrepresented	 disease	 categories.	 The	 proposed	 framework	 is	 evaluated	
under	 controlled	 independent	 and	 non-independent	 data	 distribution	 settings	 to	 assess	 its	
effectiveness	and	robustness.	
The	main	contributions	of	this	work	can	be	summarized	as	follows:	
A	contribution-aware	dynamic	aggregation	strategy	is	introduced	to	improve	model	robustness	
under	heterogeneous	pediatric	data	distributions;	
An	imbalance-aware	optimization	design	is	employed	to	enhance	diagnostic	performance	for	
rare	pediatric	conditions;	
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A	systematic	experimental	evaluation	is	conducted	to	analyze	both	diagnostic	performance	and	
communication	efficiency	in	federated	pediatric	scenarios.	

2. Related	Work	
2.1. Federated	Learning	in	Healthcare	
Federated	 learning	 has	 been	 increasingly	 explored	 as	 a	 privacy-preserving	 paradigm	 for	
collaborative	model	training	in	healthcare	applications.	By	keeping	patient	data	localized	and	
exchanging	 only	 model	 parameters	 or	 gradients,	 FL	 provides	 a	 practical	 solution	 to	 data	
governance	and	privacy	constraints	commonly	encountered	in	medical	domains.	Early	studies	
demonstrated	 the	 feasibility	 of	 federated	 learning	 for	 distributed	 training	 of	 deep	 neural	
networks,	highlighting	its	advantages	in	reducing	communication	overhead	while	preserving	
data	confidentiality.	
Subsequent	 research	 has	 extended	 federated	 learning	 to	 various	 medical	 tasks,	 including	
disease	risk	prediction,	electronic	health	record	analysis,	and	medical	image	classification.	In	
these	studies,	federated	learning	was	shown	to	achieve	performance	comparable	to	centralized	
training	 under	 certain	 conditions.	 However,	 most	 healthcare-oriented	 FL	 frameworks	
implicitly	assume	relatively	balanced	data	distributions	or	focus	on	adult	patient	populations,	
where	sample	sizes	are	typically	larger	and	more	homogeneous.	
In	real-world	clinical	settings,	especially	in	pediatric	care,	these	assumptions	often	do	not	hold.	
Differences	 in	 institutional	 specialization,	 patient	 demographics,	 and	 diagnostic	 practices	
introduce	substantial	heterogeneity	across	participating	sites,	posing	challenges	 to	standard	
federated	optimization	algorithms.	

2.2. Aggregation	Strategies	for	Heterogeneous	Data	
Aggregation	 is	a	central	 component	of	 federated	 learning,	as	 it	determines	how	 local	model	
updates	 are	 combined	 to	 form	 a	 global	 model.	 The	 classical	 federated	 averaging	 (FedAvg)	
algorithm	aggregates	client	updates	in	proportion	to	local	dataset	size,	which	is	effective	under	
independent	and	identically	distributed	(IID)	data	conditions.	However,	under	Non-IID	settings,	
FedAvg	may	suffer	from	slow	convergence,	instability,	or	degraded	model	performance.	
To	 address	 data	 heterogeneity,	 several	 variants	 have	 been	 proposed.	 Regularization-based	
methods	introduce	additional	constraints	to	limit	divergence	between	local	and	global	models,	
while	 variance-reduction	 approaches	 aim	 to	 correct	 client	 drift	 during	 local	 training.	 Other	
studies	explore	personalized	federated	learning,	allowing	local	models	to	adapt	to	institution-
specific	data	distributions.	
More	recently,	dynamic	or	adaptive	aggregation	strategies	have	been	investigated,	where	client	
contributions	 are	 weighted	 according	 to	 model	 performance,	 gradient	 similarity,	 or	
distributional	 characteristics.	 While	 these	 approaches	 demonstrate	 improved	 robustness	
under	heterogeneous	conditions,	most	are	designed	for	general	machine	learning	benchmarks	
and	do	not	explicitly	consider	the	characteristics	of	pediatric	clinical	data,	such	as	extreme	class	
imbalance	and	small	sample	sizes.	

2.3. Pediatric	AI	Diagnosis	and	Data	Imbalance	
Artificial	intelligence	applications	in	pediatric	diagnosis	have	largely	focused	on	imaging-based	
tasks	 for	 disease	 screening	 and	 diagnostic	 support.	 However,	most	 existing	 studies	 rely	 on	
single-center	 datasets	 with	 limited	 sample	 sizes,	 restricting	 model	 robustness	 and	 cross-
institutional	generalizability	(Wang	et	al.,	2025).	Similar	limitations	are	reported	in	pediatric	
subspecialties	 such	as	urology,	where	promising	deep	 learning	 tools	 remain	 constrained	by	
institution-specific	 validation	 and	 ongoing	 ethical	 and	 privacy	 concerns	 (Chowdhury	 et	 al.,	
2024).	
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Class	imbalance	is	a	persistent	issue	in	pediatric	datasets,	particularly	for	rare	diseases	where	
positive	samples	are	scarce.	Conventional	machine	learning	models	trained	on	imbalanced	data	
tend	to	favor	majority	classes,	 leading	to	reduced	sensitivity	for	clinically	critical	conditions.	
Various	 imbalance-aware	 techniques,	 including	 re-sampling	 strategies	 and	 weighted	 loss	
functions,	have	been	proposed	to	mitigate	this	problem.	However,	these	methods	are	typically	
developed	for	centralized	learning	scenarios	and	have	not	been	systematically	integrated	into	
federated	learning	frameworks	for	pediatric	diagnosis.	

2.4. Research	Gap	and	Motivation	
Although	federated	learning	(FL)	offers	a	promising	foundation	for	privacy-preserving	multi-
center	collaboration,	existing	approaches	remain	limited	when	applied	to	pediatric	diagnostic	
scenarios.	Prior	 studies	on	cross-institutional	medical	data	 collaboration	 indicate	 that	 static	
aggregation	strategies	struggle	to	accommodate	inter-institutional	data	heterogeneity,	leading	
to	statistical	bias	and	reduced	model	reliability	across	clients	(Zhang,	2025).	Moreover,	secure	
FL	 frameworks	 that	 integrate	 advanced	 cryptographic	 protocols	 primarily	 focus	 on	
safeguarding	data	exchange,	while	challenges	related	to	heterogeneity-aware	optimization	and	
imbalance	handling	 are	 often	 addressed	 separately	 rather	 than	 jointly	within	 the	 federated	
training	process	(Idowu	&	Idowu,	2025).	
There	 remains	 a	 lack	 of	 federated	 learning	 frameworks	 that	 jointly	 consider	 adaptive	
aggregation,	 class	 imbalance,	 and	 communication	 efficiency	 in	 pediatric	 settings.	 This	 gap	
motivates	the	development	of	a	dynamic	weighted	federated	learning	approach	that	can	more	
effectively	 leverage	 heterogeneous	 pediatric	 data	 while	 maintaining	 privacy	 and	 practical	
feasibility.		

3. Method	
3.1. System	Architecture	
The	proposed	Dynamic	Weighted	Federated	Learning	(DW-FL)	framework	consists	of	a	central	
coordination	 server	 and	 multiple	 hospital	 clients,	 as	 illustrated	 in	 Figure	 1.	 The	 system	 is	
designed	to	enable	collaborative	pediatric	disease	diagnosis	without	sharing	raw	clinical	data	
across	institutions.	

	
Figure	1:	System	architecture	of	the	dynamic	weighted	federated	learning	(DW-FL)	

framework	for	multi-institutional	pediatric	diagnosis	
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The	overall	 training	workflow	proceeds	as	 follows.	First,	during	 the	 initialization	phase,	 the	
central	 server	distributes	an	 initial	global	model	 to	all	participating	hospitals.Second,	 in	 the	
local	training	phase,	each	hospital	trains	the	model	using	its	own	pediatric	clinical	data,	which	
remain	 stored	 within	 the	 local	 data	 repository.	
Third,	after	local	training,	hospitals	upload	encrypted	model	parameters	to	the	server,	where	a	
contribution	 evaluation	process	 is	 performed	 to	 assess	 the	 relative	usefulness	 of	 each	 local	
update.Fourth,	based	on	the	evaluated	contributions,	the	server	conducts	dynamic	weighted	
aggregation	to	update	the	global	model.Finally,	the	updated	global	model	is	redistributed	to	all	
hospitals,	and	the	above	steps	are	iteratively	repeated	until	model	convergence.	
This	 architecture	 ensures	 that	 raw	 pediatric	 data	 never	 leave	 the	 local	 institutions	 while	
allowing	effective	multi-center	collaboration	through	model	parameter	exchange.	

3.2. Dynamic	Weighted	Aggregation	Algorithm	
In	conventional	federated	learning,	the	global	model	is	updated	using	the	Federated	Averaging	
(FedAvg)	algorithm,	where	client	updates	are	weighted	according	to	local	dataset	size:	

θt!1 ="
nk
N

K

k"1

θt
k,	

where	θtkdenotes	the	local	model	parameters	of	client	kat	round	t,	nkis	the	number	of	samples	
held	by	client	k,	and	N = ∑ nkK

k"1 .	
To	better	handle	heterogeneous	pediatric	data	distributions,	this	study	introduces	a	dynamic	
weighted	aggregation	strategy.	The	global	model	is	updated	as:	

θt!1 ="wk

K

k"1

⋅
nk
N
θt
k,	

where	wkis	a	dynamically	assigned	weight	reflecting	the	contribution	of	client	k.	
The	aggregation	weight	wkis	computed	based	on	the	client	contribution	score	Ck:	

wk =
exp	(α ⋅ Ck)

) exp	(α ⋅K
j"1 Cj)

,	

where	αis	a	scaling	factor	controlling	the	sensitivity	of	weight	assignment.	
The	contribution	score	Ckis	determined	by	jointly	considering	the	following	factors:	
the	classification	accuracy	of	the	local	model	evaluated	on	a	server-side	validation	set;	
the	Kullback–Leibler	(KL)	divergence	between	the	local	class	distribution	and	the	global	class	
distribution;	
a	historical	 contribution	stability	 coefficient	 that	 reflects	 the	 consistency	of	 the	 client’s	past	
updates.	
As	 illustrated	 in	 Figure	 1,	 this	 contribution-aware	 aggregation	 process	 is	 performed	 at	 the	
server	side	after	receiving	encrypted	model	parameters	from	all	participating	hospitals.	

3.3. Pediatric	Data	Optimization	Strategies	
3.3.1. Weighted	Cross-Entropy	Loss	
Pediatric	 datasets	 often	 exhibit	 severe	 class	 imbalance,	 particularly	 for	 rare	 diseases.	 To	
mitigate	this	issue	during	local	training,	a	weighted	cross-entropy	loss	function	is	employed:	

ℒWCE = −" βc

C

c"1

⋅ yclog	(y,c),	
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where	Cdenotes	 the	number	of	disease	classes,	ycand	y,crepresent	 the	ground-truth	 label	and	
predicted	probability	for	class	c,	respectively,	and	βcis	the	class-specific	weight.	
Higher	weights	are	assigned	to	rare	disease	categories	to	enhance	their	influence	on	gradient	
updates.	 In	 this	 study,	 the	weight	 for	 rare	diseases	 is	 set	 to	a	higher	value	 (e.g.,	βrare = 5.0),	
which	improves	model	sensitivity	to	underrepresented	pediatric	conditions.	
3.3.2	One-Dimensional	CNN	Architecture	
To	model	structured	pediatric	clinical	data,	such	as	laboratory	indicators	and	vital	signs,	a	one-
dimensional	convolutional	neural	network	(1D-CNN)	is	adopted,	as	shown	in	Figure	2.	

	
Figure	2:	One-dimensional	convolutional	neural	network	(1D-CNN)	architecture	for	pediatric	

clinical	data	modeling	
The	network	architecture	consists	of	an	input	layer	with	a	feature	dimension	of	30,	followed	by	
a	one-dimensional	convolutional	layer	with	a	kernel	size	of	3	and	16	output	channels.	A	pooling	
layer	 is	 applied	 to	 reduce	 feature	 dimensionality	 and	 improve	 robustness.	 Finally,	 a	 fully	
connected	 layer	 outputs	 the	 diagnostic	 predictions	 with	 an	 output	 dimension	 of	 2.	 This	
lightweight	architecture	 is	designed	to	balance	representational	capacity	and	computational	
efficiency,	making	it	suitable	for	federated	learning	environments	with	limited	local	training	
resources.	

3.4. Privacy	Preservation	Mechanisms	
To	 ensure	 data	 security	 and	 patient	 privacy,	 multiple	 privacy-preserving	 measures	 are	
integrated	into	the	DW-FL	framework.	
First,	gradient	clipping	and	noise	injection	are	applied	during	local	training	to	satisfy	(ϵm, δ)-
differential	 privacy	 requirements.	 Second,	 a	 secure	 aggregation	 protocol	 based	 on	 Paillier	
homomorphic	 encryption	 is	 used	 to	 protect	 uploaded	 model	 parameters	 during	
communication.	 Third,	 raw	 pediatric	 data	 never	 leave	 the	 local	 hospital	 network,	 ensuring	
compliance	with	medical	data	governance	and	privacy	regulations.Together,	these	mechanisms	
enable	secure	and	privacy-preserving	multi-center	pediatric	model	training.	
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4. Results	
4.1. Experimental	Setup	
Experiments	 were	 conducted	 using	 a	 pediatric-related	 subset	 derived	 from	 the	 publicly	
available	MIMIC-III	database,	consisting	of	approximately	12,000	records	with	30	structured	
clinical	features.	To	simulate	a	multi-center	pediatric	setting,	the	dataset	was	partitioned	into	
three	 virtual	 hospitals	 under	 both	 independent	 and	 identically	 distributed	 (IID)	 and	 non-
independent	and	non-identically	distributed	(Non-IID)	conditions.	
Four	 methods	 were	 compared:	 centralized	 training	 (Centralized),	 conventional	 federated	
averaging	(FedAvg),	static	weighted	federated	learning	(Static-FL),	and	the	proposed	dynamic	
weighted	 federated	 learning	 framework	 (DW-FL).	 Model	 performance	was	 evaluated	 using	
accuracy,	recall,	and	F1-score.	In	addition,	convergence	efficiency	was	assessed	in	terms	of	the	
number	of	communication	rounds	and	total	communication	volume.	

4.2. Diagnostic	Performance	under	Non-IID	Distribution	
Table	 1	 presents	 the	 diagnostic	 performance	 of	 different	 methods	 under	 the	 Non-IID	 data	
distribution	scenario.	Centralized	training	achieved	the	highest	overall	performance,	serving	as	
an	upper	performance	bound.	
Among	federated	learning	approaches,	DW-FL	achieved	the	best	diagnostic	performance,	with	
an	 accuracy	 of	 0.932,	 a	 recall	 of	 0.878,	 and	 an	 F1-score	 of	 0.904.	 In	 comparison,	 FedAvg	
achieved	 an	 accuracy	 of	 0.918	 and	 a	 recall	 of	 0.845,	 while	 Static-FL	 showed	 intermediate	
performance	across	all	metrics.	
Compared	with	FedAvg,	DW-FL	improved	accuracy	by	1.4%	and	recall	by	3.3%,	indicating	that	
dynamic	 weighted	 aggregation	 is	 more	 effective	 than	 static	 aggregation	 strategies	 when	
handling	heterogeneous	pediatric	data	distributions.	

Table	1:		Diagnostic	performance	comparison	under	Non-IID	distribution	

Method	 Accuracy	 Recall	 F1-score	

Centralized	 0.941	 0.892	 0.916	
FedAvg	 0.918	 0.845	 0.880	

Static-FL	 0.925	 0.861	 0.892	

DW-FL	 0.932	 0.878	 0.904	

	
4.3. Convergence	Efficiency	and	Communication	Overhead	
The	convergence	efficiency	of	different	federated	learning	methods	is	summarized	in	Table	2.	
FedAvg	required	320	communication	rounds	to	converge,	with	a	total	communication	volume	
of	45.2	MB.	Static-FL	reduced	the	number	of	rounds	to	290	and	the	communication	overhead	
to	41.8	MB.	
DW-FL	demonstrated	 the	highest	 training	efficiency,	 converging	within	265	 communication	
rounds	and	reducing	total	communication	volume	to	38.7	MB.	Compared	with	FedAvg,	DW-FL	
reduced	 the	 number	 of	 communication	 rounds	 by	 17.2%	 and	 decreased	 communication	
overhead	by	14.4%.	
These	results	 indicate	 that	contribution-aware	dynamic	aggregation	can	effectively	 improve	
convergence	speed	and	reduce	communication	cost	in	federated	pediatric	learning	scenarios.	
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Table	2:	Convergence	efficiency	and	communication	overhead	

Method	Convergence	rounds	 	Communication	volume	(MB)	

FedAvg					320		 45.2	

Static-FL		290	 41.8	

DW-FL					265		 38.7	
	

4.4. Performance	on	Rare	Disease	Diagnosis	
To	 further	 evaluate	 model	 robustness	 under	 class	 imbalance,	 a	 rare	 disease	 scenario	 was	
simulated,	in	which	positive	samples	accounted	for	approximately	5%	of	the	dataset.	Recall	for	
rare	disease	classes	was	used	as	the	primary	evaluation	metric.	
As	shown	in	Table	3,	DW-FL	achieved	a	recall	of	0.831	for	rare	disease	diagnosis,	compared	
with	 0.712	 achieved	 by	 FedAvg.	 This	 corresponds	 to	 a	 relative	 improvement	 of	 16.7%.	 In	
addition,	 the	missed	diagnosis	 rate	was	reduced	 from	28.8%	to	16.9%,	 indicating	 improved	
sensitivity	to	underrepresented	pediatric	disease	categories.	
	

Table	3:	Rare	disease	diagnosis	performance	

Method	 Recall	(rare	disease)	 Missed	diagnosis	rate	

FedAvg	 0.712	 28.8%	

DW-FL	 0.831	 16.9%	

4.5. Ablation	Study	
An	ablation	study	was	conducted	to	assess	the	individual	contributions	of	the	key	components	
in	 the	proposed	 framework.	When	only	 the	weighted	 cross-entropy	 loss	was	applied,	 recall	
improved	 by	 8.2%	 compared	 with	 FedAvg.	 When	 only	 the	 dynamic	 weighted	 aggregation	
mechanism	was	employed,	convergence	speed	improved	by	12.1%.	
The	combination	of	both	components	achieved	the	best	overall	performance,	confirming	that	
dynamic	aggregation	and	imbalance-aware	optimization	are	complementary	in	improving	both	
diagnostic	accuracy	and	training	efficiency.	

5. Discussion	
5.1. Balancing	Privacy	and	Model	Performance	
In	 healthcare	 applications,	 particularly	 in	 pediatric	 settings,	 data	 privacy	 remains	 a	
fundamental	constraint	 for	 large-scale	collaborative	model	 training.	Federated	 learning	(FL)	
has	therefore	emerged	as	a	practical	paradigm	by	enabling	institutions	to	jointly	train	models	
without	 sharing	 raw	 patient	 data.	 However,	 prior	 studies	 indicate	 that	 privacy-preserving	
mechanisms	 may	 introduce	 performance	 degradation,	 communication	 overhead,	 or	
optimization	instability,	limiting	real-world	deployment	(Hall	et	al.,	2025).	
The	proposed	dynamic	weighted	 federated	 learning	 (DW-FL)	 framework	demonstrates	 that	
model	 performance	 can	 be	 substantially	 improved	 without	 increasing	 privacy	 risks.	 By	
avoiding	data	migration	 and	 relying	 solely	 on	parameter-level	 exchanges,	DW-FL	preserves	
institutional	data	sovereignty	while	achieving	performance	comparable	to	centralized	training	
under	non-IID	conditions.	This	 finding	aligns	with	 recent	evidence	 suggesting	 that	 carefully	
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designed	 aggregation	 strategies	 can	 mitigate	 the	 traditional	 trade-off	 between	 privacy	
protection	and	predictive	accuracy	in	medical	federated	learning	systems	(Zhang,	2025).	

5.2. Pediatric	Applicability	Analysis	
	
Pediatric	datasets	are	inherently	heterogeneous	across	institutions	due	to	variations	in	patient	
demographics,	disease	prevalence,	and	clinical	protocols.	Such	heterogeneity	poses	significant	
challenges	for	conventional	FL	methods	that	adopt	static	aggregation	strategies.	The	dynamic	
weighting	mechanism	in	DW-FL	allows	adaptive	adjustment	of	client	contributions	based	on	
data	 characteristics	 and	 model	 behavior,	 making	 it	 particularly	 suitable	 for	 multi-center	
pediatric	collaboration.	
In	 addition,	 pediatric	 diagnosis	 often	 involves	 severe	 class	 imbalance,	 especially	 for	 rare	
diseases,	 which	 increases	 the	 risk	 of	 biased	 global	 models	 and	 missed	 diagnoses.	 By	
incorporating	 a	 weighted	 loss	 function	 into	 the	 federated	 optimization	 process,	 DW-FL	
effectively	alleviates	class	imbalance	at	both	local	and	global	levels.	This	integrated	treatment	
of	 heterogeneity	 and	 imbalance	 addresses	 limitations	 commonly	 observed	 in	 existing	 FL	
studies,	 where	 imbalance-aware	 optimization	 is	 often	 considered	 independently	 of	 the	
federated	aggregation	process	(Lu	et	al.,	2024;	Ganatra,	2025).	

5.3. Limitations	
Despite	its	advantages,	this	study	has	several	limitations.	First,	the	experimental	evaluation	is	
conducted	on	simulated	datasets,	and	further	validation	using	real-world	multi-center	pediatric	
data	 is	 required	 to	 confirm	 clinical	 robustness	 and	 generalizability.	 Second,	 the	 current	
framework	focuses	on	unimodal	data	and	does	not	consider	multimodal	fusion	scenarios,	such	
as	the	joint	use	of	medical	imaging	and	clinical	text,	which	are	increasingly	common	in	pediatric	
diagnosis	(Borazjani	et	al.,	2024;	MedLeak,	2024).	Third,	extreme	heterogeneity	scenarios—
such	 as	 cross-national	 deployments	 with	 substantially	 different	 diagnostic	 standards	 and	
healthcare	infrastructures—are	not	explicitly	 investigated	and	remain	an	open	challenge	for	
future	research.	

6. Conclusion	and	Future	Directions	
This	paper	proposes	a	dynamic	weighted	federated	learning	framework	tailored	for	pediatric	
disease	 diagnosis.	 By	 jointly	 addressing	 data	 heterogeneity,	 class	 imbalance,	 and	
communication	 efficiency,	 the	 proposed	 approach	 enables	 privacy-preserving	 multi-
institutional	 collaboration	 while	 maintaining	 high	 diagnostic	 performance.	 Experimental	
results	demonstrate	that	DW-FL	achieves	performance	close	to	centralized	training	under	non-
IID	 data	 distributions,	 with	 significantly	 improved	 communication	 efficiency	 compared	 to	
conventional	federated	learning	methods.	
Future	work	may	explore	multimodal	federated	learning	integrating	medical	imaging,	genomic	
data,	and	clinical	text	to	improve	diagnostic	accuracy	(Borazjani	et	al.,	2024;	MedLeak,	2024),	
as	well	as	cross-age	transfer	learning	that	leverages	adult	datasets	for	pretraining	to	enhance	
pediatric	 model	 performance	 (Li	 et	 al.,	 2020;	 Rashidi	 et	 al.,	 2023).	 In	 addition,	 combining	
federated	 learning	 with	 blockchain	 technology	 can	 enable	 decentralized	 and	 auditable	
collaboration	(Nguyen	et	al.,	2023),	while	real-world	multi-center	clinical	trials	are	required	to	
validate	feasibility	in	pediatric	settings	(Rieke	et	al.,	2020;	Zhang,	2025).	
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