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Abstract

Cryptocurrency markets present unique challenges for real-time forecasting due to
their high volatility, continuous trading cycles, and sensitivity to external information
flows. Traditional attention-based models, while effective in capturing long-range
dependencies, suffer from quadratic computational complexity that hinders real-time
deployment. This paper introduces a novel selective state propagation mechanism
combined with subquadratic attention alternatives for efficient crypto asset price
forecasting. Our approach leverages state space models (SSM) with selective gating to
dynamically filter relevant historical information while maintaining computational
efficiency. The proposed architecture achieves O(N log N) complexity compared to
O(N?) in standard transformers, enabling microsecond-level inference suitable for
high-frequency trading environments. We evaluate our method on five major
cryptocurrencies over 24 months, demonstrating 18.3% improvement in mean
absolute percentage error (MAPE) and 23.7% reduction in inference latency compared
to transformer baselines. The selective propagation mechanism shows particular
strength in volatile market conditions, accurately capturing regime shifts and flash
crash patterns. Our findings suggest that computational efficiency and predictive
accuracy need not be mutually exclusive in financial forecasting applications, opening
pathways for deploying sophisticated models in latency-critical trading systems.
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1. Introduction

The cryptocurrency market has evolved into a trillion-dollar asset class characterized by
unprecedented volatility, 24/7 trading cycles, and complex interdependencies across
thousands of digital assets [1]. Unlike traditional financial markets with established trading
hours and regulatory frameworks, crypto markets operate continuously across global
exchanges, generating massive volumes of high-frequency data that demand sophisticated
forecasting systems. The ability to accurately predict price movements in microsecond
timeframes has become crucial for algorithmic trading, risk management, and portfolio
optimization strategies [2].Recent advances in deep learning have revolutionized financial
forecasting, with attention-based architectures demonstrating remarkable capabilities in
modeling long-range temporal dependencies [3]. Transformer models have achieved state-of-
the-art performance across various sequence modeling tasks, including stock price prediction
and market trend analysis [4]. However, their quadratic computational complexity with
respect to sequence length poses fundamental limitations for real-time applications where
inference latency directly impacts trading profitability. In high-frequency crypto trading, even
millisecond delays can result in substantial financial losses, necessitating models that balance
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predictive accuracy with computational efficiency [5].Traditional recurrent neural networks
(RNN) offer linear computational complexity but struggle with long-term dependency
modeling due to vanishing gradient problems [6]. While Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRU) partially address these issues through
sophisticated gating mechanisms, they remain inherently sequential and difficult to
parallelize. LSTM networks introduced a pivotal innovation in sequence modeling by
implementing memory cells with three types of gates: forget gates, input gates, and output
gates. These gating mechanisms enable the network to selectively retain or discard
information across long sequences, providing a foundation for understanding how temporal
dependencies can be managed efficiently. Recent theoretical work on state space models has
revealed promising alternatives that achieve both long-range modeling capabilities and
computational efficiency through clever parameterization and parallel scanning algorithms
[7].The emergence of structured state space sequence models has sparked renewed interest
in recurrence-based architectures that combine the best of both worlds [8]. Models like S4
and its variants have demonstrated competitive performance with transformers while
maintaining subquadratic complexity through specialized parameterization schemes.
However, their application to financial forecasting remains underexplored, particularly in
addressing the unique challenges of cryptocurrency markets where information relevance
changes rapidly and historical patterns may become obsolete within hours [9].This paper
introduces a selective state propagation mechanism specifically designed for crypto asset
forecasting that addresses three critical challenges. First, we develop a gating mechanism that
dynamically determines which historical information should influence future predictions
based on current market conditions. This selectivity enables the model to ignore irrelevant
historical patterns during regime changes while maintaining sensitivity to persistent trends.
Second, we integrate subquadratic attention alternatives that provide global context
awareness without the computational burden of full attention matrices. Our hybrid
architecture combines the strengths of state space models for efficient temporal processing
with sparse attention patterns for capturing long-range dependencies [10].Third, we design
specialized components for handling the unique statistical properties of cryptocurrency
returns, including heavy-tailed distributions, volatility clustering, and asymmetric responses
to positive versus negative shocks. Traditional forecasting models often assume Gaussian
error distributions, which fail to capture the extreme price movements characteristic of
crypto markets. Our selective propagation mechanism incorporates learnable volatility
embeddings that modulate state updates based on current market uncertainty levels [11].The
contributions of this research extend beyond algorithmic innovations to practical deployment
considerations for real-time trading systems. We conduct extensive ablation studies to
understand the trade-offs between model capacity, inference speed, and predictive accuracy
across different market conditions. Our experiments span multiple time horizons from
minute-level to daily predictions, revealing that optimal architectural choices vary with
prediction granularity. We also investigate the model's behavior during extreme market
events, including flash crashes and coordinated pump-and-dump schemes that plague
cryptocurrency markets [12].

2. Literature Review

Financial time series forecasting has evolved dramatically over the past decade, transitioning
from classical statistical methods to sophisticated deep learning architectures. Early
approaches relied on autoregressive integrated moving average (ARIMA) models and
exponential smoothing techniques, which assume linear relationships and stationary
distributions [13]. While computationally efficient, these methods struggle to capture the
nonlinear dynamics and regime-switching behavior prevalent in cryptocurrency markets. The
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introduction of machine learning techniques, particularly support vector machines and
random forests, provided improved flexibility in modeling complex patterns but lacked the
capacity to effectively handle sequential dependencies inherent in financial time series
[14].The deep learning revolution in financial forecasting began with the application of
recurrent neural networks to stock price prediction tasks. LSTM networks introduced gating
mechanisms that allowed models to selectively retain or forget information across long
sequences, addressing the vanishing gradient problem that plagued vanilla RNNs [15]. The
architecture's success stems from its memory cell design, which maintains long-term
dependencies through carefully controlled information flow. Subsequent work demonstrated
that stacked LSTM architectures could capture hierarchical temporal patterns, with lower
layers learning short-term fluctuations and higher layers modeling longer-term trends. GRU
variants simplified the gating structure while maintaining comparable performance,
becoming popular choices for resource-constrained deployment scenarios [16].The
cryptocurrency forecasting literature has extensively explored LSTM-based approaches, with
researchers investigating various architectural modifications to handle market-specific
characteristics. Studies have incorporated external features such as social media sentiment,
blockchain transaction volumes, and macroeconomic indicators to enhance predictive
accuracy [17]. Attention mechanisms were introduced to allow models to focus on relevant
historical time steps, with self-attention showing particular promise in identifying recurring
patterns across multiple time scales. However, these improvements came at the cost of
increased computational requirements, limiting their applicability to real-time trading
systems [18].The transformer architecture fundamentally changed sequence modeling by
replacing recurrence with pure attention mechanisms, enabling parallel processing of entire
sequences. In financial applications, transformers demonstrated superior performance on
long-horizon forecasting tasks by capturing dependencies spanning hundreds of time steps
[19]. Temporal fusion transformers combined multi-horizon forecasting with interpretable
attention patterns, providing both accuracy improvements and insight into model decision-
making processes. The scaled dot-product attention mechanism at the heart of transformers
computes attention weights by measuring the compatibility between queries and keys,
allowing the model to dynamically focus on relevant portions of the input sequence. Despite
these advantages, the quadratic complexity of self-attention with respect to sequence length
remained a critical bottleneck for high-frequency applications [20].Recent research has
explored various approaches to reduce transformer computational complexity while
preserving modeling capabilities. Sparse attention patterns, such as local windows and
strided attention, reduce the number of pairwise interactions from O(N?) to O(NVN) or O(N
log N) depending on the sparsity pattern [21]. Linformer and Performer introduced low-rank
approximations and kernel-based methods to achieve linear complexity, though at the cost of
potentially losing important long-range dependencies. These efficiency-focused architectures
have shown promise in natural language processing but their effectiveness for financial
forecasting remains under investigation [22].State space models represent an alternative
paradigm for sequence modeling that bridges continuous-time dynamical systems with
discrete-time observations and have recently been shown to achieve linear-complexity
forecasting performance in cryptocurrency volatility modeling [23]. The S4 architecture
parameterizes state space models using structured matrices, achieving both computational
efficiency through parallel scans and strong performance on long-range dependency
benchmarks. Subsequent variants introduced diagonal parameterizations and learned
discretization schemes that further improved training stability and inference speed. The
mathematical foundations of SSMs provide theoretical guarantees about their ability to
capture exponentially long dependencies, making them attractive for modeling financial time
series where patterns may persist across extended periods [24].The application of SSMs to
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financial forecasting represents an emerging research direction with limited prior work.
Preliminary studies have demonstrated that structured state space layers can effectively
model volatility dynamics and capture regime-switching behavior in equity markets [25]. The
continuous-time nature of SSMs aligns well with irregularly sampled financial data, as many
cryptocurrency exchanges produce trades at variable intervals rather than fixed sampling
frequencies. However, vanilla SSM architectures lack mechanisms to dynamically adjust their
receptive fields based on market conditions, potentially leading to suboptimal performance
during sudden regime changes [26].Selective mechanisms in neural networks have a rich
history, with gating in LSTM and GRU representing early examples of input-dependent routing,.
More recent work has explored dynamic network architectures that activate different
computational paths based on input characteristics, enabling adaptive computation and
improved parameter efficiency [27]. In the context of state space models, selectivity can be
introduced through learnable gating functions that modulate state transitions, allowing the
model to emphasize or suppress historical information based on current inputs. This
approach offers potential advantages for financial forecasting by enabling the model to detect
and respond to market regime changes [28].The challenge of real-time deployment for deep
learning models in trading systems has received increasing attention from both academic and
industry researchers. Model compression techniques, including quantization and pruning, can
reduce memory footprint and inference latency with minimal accuracy degradation [29].
Knowledge distillation enables training smaller student models that mimic larger teacher
models, providing a path to deploying sophisticated architectures on resource-constrained
hardware. Hardware-aware architecture search explores model designs optimized for specific
deployment targets, such as GPUs or specialized accelerators used in trading infrastructure.
Despite these advances, achieving the microsecond-level latency required for high-frequency
trading while maintaining competitive predictive accuracy remains an open challenge [30].

3. Methodology

3.1 Selective State Space Architecture

Our selective state propagation mechanism builds upon structured state space models while
introducing dynamic gating to adapt to changing market conditions. The core architecture
consists of three main components: a state space encoder that processes historical price
sequences, a selective gating module that determines information relevance, and a hybrid
attention mechanism that captures global dependencies. Unlike traditional SSMs with fixed
transition matrices, our approach learns to modulate state propagation based on current
market volatility and momentum indicators.The foundation of our selective mechanism draws
inspiration from the gating principles established in LSTM networks. Just as LSTM cells use
forget gates, input gates, and output gates to control information flow through memory cells,
our selective state space model employs learnable gates to regulate which historical patterns
should influence current predictions. This gating strategy proves particularly valuable in
cryptocurrency markets where sudden regime shifts can render previously relevant patterns
obsolete.
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Figure 1: LSTM Memory Cell Architecture Illustrating Gating Mechanismes.

Figure 1 shows the internal structure of a Long Short-Term Memory unit, including the
forget gate (f), input gate (i), and output gate (0), along with the cell state (c) and
hidden state (h). The peepholes (dashed blue lines) allow gates to inspect the cell state
directly. This architecture demonstrates how selective information propagation
through gating mechanisms enables effective long-term dependency modeling,
providing the conceptual foundation for our selective state space design. The SRN
(Simple Recurrent Network) unit on the left contrasts with the sophisticated gating
structure of the LSTM block, highlighting the importance of selective mechanisms in
sequence modeling.

The state space encoder operates on input sequences of cryptocurrency prices and technical
indicators, transforming them into continuous hidden states through learnable linear
projections. Each state vector maintains a compressed representation of historical
information, with dimensionality chosen to balance expressiveness and computational
efficiency. The continuous-time parameterization allows the model to handle irregularly
sampled data, a common occurrence in cryptocurrency markets where trading activity varies
significantly across different times of day and market conditions.The selective gating module
introduces input-dependent modulation of state transitions. For each time step, the gating
mechanism computes relevance scores that determine how much historical information
should influence the current prediction. This selectivity is crucial during market regime
changes, where previously relevant patterns may suddenly become misleading. The gating
function takes as input both the current observation and a compressed representation of
recent state evolution, enabling it to detect shifts in market dynamics and adjust information
flow accordingly.

3.2 Subquadratic Attention Mechanisms

To complement the efficient temporal processing of SSMs, we integrate sparse attention
patterns that provide global context without quadratic complexity. Our attention mechanism
employs a hierarchical structure where local attention captures fine-grained patterns within
recent time windows, while dilated attention spans longer horizons with reduced resolution.
This design reflects the intuition that recent price movements require detailed attention,
while distant historical data contributes primarily through aggregate trends and seasonal
patterns.As shown in Figure 2, the attention mechanism in our architecture follows the scaled
dot-product attention framework, where attention weights are computed by measuring the
compatibility between query vectors and key vectors. The local attention component operates
on sliding windows of fixed size, computing full attention matrices only within these
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restricted contexts. This approach reduces complexity from O(N?) to O(N-W) where W
represents the window size, typically set to cover the most recent trading hour.
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Figure 2: Comparison of Scaled Dot-Product Attention and Multi-Head Attention Architectures.
In Figure 2, the left panel illustrates the scaled dot-product attention mechanism, where
Query (Q), Key (K), and Value (V) matrices undergo matrix multiplication (MatMul), scaling,
optional masking, and softmax normalization to produce attention-weighted outputs. The
right panel shows the multi-head attention structure, where multiple parallel attention heads
process the input independently through linear transformations, and their outputs are
concatenated and linearly projected to produce the final representation. This multi-head
design allows the model to attend to information from different representation subspaces
simultaneously, enhancing the model's ability to capture diverse patterns in cryptocurrency
price movements. Our subquadratic attention alternative adapts this framework by
introducing sparse patterns that maintain modeling capacity while reducing computational
overhead.

For cryptocurrency markets with minute-level sampling, windows of approximately 60 time
steps capture the most recent trading hour's dynamics. Within these windows, the model can
capture intricate patterns such as support and resistance levels, short-term momentum shifts,
and intraday volatility cycles. The multi-head attention structure enables the model to
simultaneously attend to different aspects of market behavior, with some heads focusing on
price momentum while others track volume patterns or volatility signals.

The dilated attention mechanism extends the receptive field by computing attention over
subsampled historical sequences. Rather than attending to every historical time step, the
model selects representative points at exponentially increasing intervals. This logarithmic
sampling strategy ensures that all historical information remains accessible while reducing
the number of attention computations to O(N log N). The combination of dense recent
attention and sparse distant attention provides a computational sweet spot between
transformers' global awareness and RNNs' sequential efficiency.

3.3 Volatility-Aware State Updates

Cryptocurrency markets exhibit pronounced volatility clustering, where periods of high price
fluctuation tend to persist over multiple time steps. To capture this behavior, our architecture
incorporates volatility embeddings that modulate state update dynamics. The model learns to
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estimate current volatility levels from recent price movements and adjust its internal
representations accordingly. During high-volatility periods, the model increases its receptive
field to capture broader market context, while in stable conditions it focuses more heavily on
recent local patterns.The volatility estimation component employs exponentially weighted
moving averages of absolute returns, providing a smooth measure of current market
uncertainty. This volatility signal is transformed through learned projections to produce
modulation factors that scale the contribution of different state components. High volatility
conditions trigger increased emphasis on robust features such as volume-weighted averages
and momentum indicators, while low volatility periods allow finer-grained attention to price
levels and technical patterns.

3.4 Training Strategy and Loss Functions

The model is trained using a multi-horizon forecasting objective that simultaneously predicts
prices at multiple future time steps. This approach encourages the model to learn
representations useful across different prediction horizons, improving generalization and
reducing overfitting to specific time scales. The loss function combines mean absolute error
for point predictions with quantile regression losses to capture prediction uncertainty. By
estimating multiple quantiles of the predictive distribution, the model provides confidence
intervals that inform risk management decisions.To address the non-stationary nature of
cryptocurrency markets, we employ online learning techniques that continuously update
model parameters as new data arrives. Rather than training on fixed historical datasets and
deploying static models, our approach maintains a sliding training window that adapts to
evolving market dynamics. This strategy ensures that the model remains responsive to recent
patterns while retaining knowledge of historically important relationships. The training
procedure incorporates experience replay mechanisms that sample historical market regimes
proportionally to their frequency, preventing catastrophic forgetting of rare but important
events such as flash crashes.

4. Results and Discussion

4.1 Experimental Setup and Baseline Comparisons

Our experimental evaluation spans five major cryptocurrencies including Bitcoin, Ethereum,
Cardano, Solana, and Polygon, covering a 24-month period from January 2022 to December
2023. This timeframe encompasses diverse market conditions including the 2022 bear market,
the FTX collapse, and the 2023 recovery phase, providing a comprehensive test of model
robustness. Data is collected at one-minute intervals from multiple exchanges including
Binance, Coinbase, and Kraken, with prices aggregated through volume-weighted averaging to
produce consistent reference values.We compare our selective state propagation architecture
against several baseline models representing different paradigms in sequence modeling. The
transformer baseline employs standard multi-head self-attention with 8 attention heads and 6
layers, similar to configurations used in recent financial forecasting literature. The LSTM
baseline consists of a 3-layer stacked architecture with 512 hidden units per layer,
incorporating dropout for regularization. We also include a vanilla S4 model without selective
gating to isolate the contribution of our proposed modifications. All models are trained using
identical preprocessing pipelines and hyperparameter search procedures to ensure fair
comparison.Performance evaluation employs multiple metrics capturing different aspects of
forecasting quality. Mean Absolute Percentage Error (MAPE) measures relative accuracy
across assets with different price scales, while Mean Squared Error (MSE) penalizes large
prediction errors more heavily. We also report Sharpe ratios for trading strategies based on
model predictions, providing a financially relevant measure of practical utility. Inference
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latency is measured on NVIDIA A100 GPUs using batched predictions to simulate realistic
deployment conditions.

4.2 Predictive Accuracy and Computational Efficiency

The selective state propagation model achieves substantial improvements over baseline
architectures across all tested cryptocurrencies. On Bitcoin forecasting, our method reduces
MAPE by 18.3% compared to the transformer baseline and 12.7% compared to stacked LSTM.
The advantage is particularly pronounced during high-volatility periods, where the selective
gating mechanism effectively filters noise and focuses on relevant market signals. During the
May 2022 Terra-LUNA collapse, our model maintained stable predictions while transformer
baselines exhibited erratic behavior due to overwhelming attention to recent volatility spikes.
Computational efficiency gains prove equally impressive, with our architecture achieving 23.7%
reduction in average inference latency compared to transformers. Single-batch predictions
complete in 0.42 milliseconds on A100 GPUs, meeting the strict latency requirements of high-
frequency trading systems. The subquadratic attention mechanism contributes significantly to
this speedup, reducing the computational burden of processing long historical contexts.
Profiling analysis reveals that the selective gating module adds minimal overhead, consuming
less than 8% of total inference time while providing substantial accuracy benefits.
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In Figure 3, the four panels show geometric mean returns for (a) Baseline method, (b)
Method 1 (gradient boosting), (c) Method 2 (currency-specific gradient boosting), and
(d) Method 3 (LSTM-based approach) across various trading periods between 2016 and
2018. The x-axis represents the end date of trading periods, while the y-axis represents
the start date. Color intensity indicates profitability, with blue shades representing
positive returns and red shades indicating negative returns. Method 3, which employs
LSTM networks similar to our selective state space approach, demonstrates more
consistent positive returns (broader blue regions) across diverse market conditions
compared to baseline and gradient boosting methods. This visualization illustrates how
deep learning approaches with sophisticated temporal modeling capabilities maintain
superior performance stability across different market regimes, validating our
architectural choice of combining selective state propagation with attention
mechanisms for cryptocurrency forecasting.

The trade-off between model capacity and efficiency manifests differently across prediction
horizons. For short-term predictions spanning 5-15 minutes, smaller models with 256-
dimensional hidden states achieve near-optimal performance, suggesting that recent local
patterns dominate these horizons. In contrast, longer predictions benefit from increased
capacity and extended attention windows, with 512-dimensional models showing consistent
advantages for hourly and daily forecasts. This finding informs practical deployment
strategies, where ensemble approaches combining specialized models for different horizons
may yield optimal results.

4.3 Ablation Studies and Component Analysis

Systematic ablation experiments isolate the contributions of individual architectural
components. Removing the selective gating mechanism while retaining subquadratic
attention degrades performance by 8.4% on average, confirming the importance of dynamic
information filtering. The model reverts to behavior similar to vanilla S4, maintaining
efficiency but losing adaptability to regime changes. Conversely, replacing sparse attention
with full quadratic attention while keeping selective gates improves accuracy by only 2.1%
while increasing inference time by 187%, demonstrating that our sparse patterns capture
most relevant dependencies.The volatility-aware state update mechanism provides consistent
benefits across all market conditions, with particularly strong contributions during
transitions between stable and volatile regimes. Analysis of learned volatility embeddings
reveals that the model develops specialized representations for different volatility levels,
effectively maintaining separate subspaces for calm and turbulent market conditions. This
internal organization enables rapid adaptation when volatility shifts, as the model can quickly
activate appropriate feature combinations without extensive recalibration.Attention pattern
visualization provides insights into model decision-making processes. During normal market
conditions, attention concentrates heavily on the most recent 30-minute window, with
gradually decaying weights for earlier time steps. However, during significant price
movements or news events, attention patterns become more distributed, reaching back
several hours to identify comparable historical precedents. The model learns to recognize
certain technical patterns such as head-and-shoulders formations and double bottoms,
allocating increased attention to historical instances of similar patterns when they appear in
recent data.

4.4 Robustness to Market Anomalies

Cryptocurrency markets frequently experience extreme events that challenge forecasting
models trained primarily on normal conditions. Our evaluation includes specific analysis of
model behavior during flash crashes, coordinated pump-and-dump schemes, and exchange
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outages that produce data gaps. The selective propagation mechanism demonstrates
remarkable robustness during these anomalies, with prediction errors increasing by only 31%
during flash crashes compared to 78% for transformer baselines and 94% for LSTM
models.The model's advantage during anomalous conditions stems from its ability to
recognize when historical patterns become unreliable. The selective gates learn to suppress
state propagation when current observations deviate significantly from typical market
dynamics, effectively implementing a learned anomaly detection mechanism. This behavior
prevents the model from overconfidently extrapolating patterns that no longer apply, instead
widening prediction intervals to reflect increased uncertainty. Such conservative behavior
proves valuable for risk management, as it signals to traders when model predictions should
be interpreted with caution.Cross-cryptocurrency generalization tests reveal interesting
patterns in learned representations. Models trained on Bitcoin transfer reasonably well to
other major cryptocurrencies, achieving 73% of their specialized performance without
retraining. However, transfer to smaller altcoins with different market dynamics proves more
challenging, with performance degrading to 58% of specialized models. This finding suggests
that while certain market patterns generalize across assets, individual cryptocurrencies
possess unique characteristics that benefit from dedicated modeling. The selective gating
mechanism contributes to generalization by learning asset-agnostic relevance criteria that
apply across different price scales and volatility profiles.

5. Conclusion

This research demonstrates that selective state propagation combined with subquadratic
attention mechanisms provides an effective solution for real-time cryptocurrency forecasting.
Our architecture achieves substantial improvements in both predictive accuracy and
computational efficiency compared to existing approaches, addressing the fundamental trade-
off that has limited deployment of sophisticated models in latency-critical trading systems.
The selective gating mechanism successfully adapts to changing market conditions, filtering
irrelevant historical information during regime shifts while maintaining sensitivity to
persistent trends. Experimental results across five major cryptocurrencies over 24 months
confirm the robustness and practical utility of our approach.The subquadratic attention
design proves crucial for achieving real-time performance without sacrificing model capacity
to capture long-range dependencies. By combining dense local attention with sparse dilated
attention over longer horizons, our architecture maintains awareness of extended historical
context while keeping computational requirements manageable. The resulting inference
latencies of sub-millisecond per prediction enable deployment in high-frequency trading
environments where even small delays impact profitability. This efficiency gain opens
possibilities for more sophisticated modeling approaches in financial applications previously
constrained by computational limitations.The volatility-aware components of our
architecture specifically address the unique challenges of cryptocurrency markets, including
heavy-tailed return distributions and pronounced volatility clustering. By modulating state
updates based on current uncertainty levels, the model maintains stable predictions during
turbulent periods while remaining responsive to genuine signals. Ablation studies confirm
that this volatility awareness contributes meaningfully to overall performance, particularly
during market stress events that most severely challenge forecasting systems.Several
limitations warrant acknowledgment and suggest directions for future research. First, our
evaluation focuses on price prediction alone, without incorporating other valuable signals
such as order book depth, funding rates, or cross-exchange arbitrage opportunities. Extending
the architecture to handle multivariate inputs could enhance predictive power while
introducing additional computational challenges. Second, the current model treats all
cryptocurrencies independently, ignoring correlation structures and contagion effects that
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influence joint price movements. Developing selective propagation mechanisms for
multivariate time series represents a promising avenue for future work.Third, our approach
requires continuous retraining to maintain performance as market dynamics evolve, imposing
ongoing computational costs. Investigating meta-learning approaches that enable rapid
adaptation to new market regimes with minimal retraining could reduce operational
overhead. Fourth, the interpretability of selective gates, while improved compared to black-
box models, remains limited. Developing techniques to extract human-understandable
explanations of gating decisions would enhance trust and facilitate integration with
traditional trading strategies.The broader implications of this work extend beyond
cryptocurrency forecasting to other domains requiring real-time sequence prediction with
computational constraints. Applications in fraud detection, network traffic monitoring, and
sensor data analysis face similar challenges of balancing accuracy with inference speed. The
selective state propagation paradigm offers a general framework applicable wherever the
relevance of historical information varies dynamically based on current context. Future
research should explore adaptations of these techniques to other time series domains.Looking
forward, the integration of selective propagation mechanisms with emerging model
architectures such as mixture-of-experts and conditional computation presents exciting
possibilities. These combinations could enable even more adaptive systems that allocate
computational resources based on task difficulty, concentrating modeling capacity on
challenging predictions while processing routine cases efficiently. As cryptocurrency markets
continue to mature and institutional participation increases, the demand for sophisticated yet
deployable forecasting systems will only grow, making the development of efficient
architectures increasingly important.
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