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Abstract	
Industrial	manufacturing	 systems	 increasingly	 rely	 on	 graph-structured	data	derived	
from	 machines,	 sensors,	 and	 operational	 technology	 (OT)	 networks	 to	 support	
monitoring,	 optimisation,	 and	 anomaly	 analysis.	 However,	 deploying	 graph	 neural	
network	(GNN)–based	clustering	methods	 in	such	environments	 is	challenging	due	 to	
strict	resource	constraints	on	edge	and	control	hardware,	as	well	as	heightened	security	
risks	arising	from	compromised	or	noisy	nodes.	Existing	graph	clustering	approaches	
typically	 assume	 abundant	 computational	 resources	 and	 benign	 data	 conditions,	
limiting	their	applicability	in	real-world	industrial	settings.	In	this	work,	we	propose	a	
resource-constrained	secure	graph	neural	clustering	framework	tailored	for	industrial	
manufacturing	 systems.	 The	 proposed	 method	 integrates	 lightweight	 graph	 neural	
representations	 with	 security-aware	 constraints	 that	 mitigate	 the	 influence	 of	
adversarial	 perturbations,	 faulty	 devices,	 and	 unreliable	 communication	 links.	 By	
explicitly	accounting	for	memory,	computation,	and	latency	limitations,	the	framework	
enables	 stable	 and	 efficient	 clustering	 on	 OT-grade	 hardware	 without	 sacrificing	
robustness.	Extensive	experiments	on	industrial-style	graph	datasets	demonstrate	that	
the	 proposed	 approach	 achieves	 competitive	 clustering	 quality	 while	 significantly	
improving	resilience	under	resource	scarcity	and	security	stress.	The	results	highlight	
the	practicality	of	secure	GNN-based	clustering	 for	deployment	 in	real	manufacturing	
environments,	 bridging	 the	 gap	 between	 advanced	 graph	 learning	 techniques	 and	
operationally	constrained	industrial	systems.	
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1. Introduction	
Industrial	manufacturing	systems	are	undergoing	rapid	digital	 transformation	driven	by	the	
integration	of	sensors,	programmable	logic	controllers	(PLCs),	and	industrial	Internet	of	Things	
(IIoT)	devices	into	operational	technology	(OT)	networks[13,14].These	systems	generate	large	
volumes	of	structured	interaction	data	that	can	be	naturally	modelled	as	graphs,	where	nodes	
represent	 machines,	 controllers,	 or	 production	 units,	 and	 edges	 encode	 communication,	
dependency,	 or	 workflow	 relationships[15,16].	 Analysing	 such	 graph-structured	 data	 is	
essential	 for	 tasks	 including	 system	 monitoring,	 process	 optimisation,	 fault	 diagnosis,	 and	
anomaly	detection	in	modern	manufacturing	environments[17,18].	

Graph neural networks (GNNs) have emerged as a powerful paradigm for learning representations 
from graph-structured data and have shown strong performance in clustering and community 
discovery tasks[1]–[3]. In industrial settings, graph neural clustering enables the identification of 
functional modules, production stages, or behavioural patterns without requiring extensive manual 
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labelling. However, despite their success in academic benchmarks, most	 existing	 GNN-based	
clustering	methods	 are	 designed	 under	 assumptions	 that	 rarely	 hold	 in	 real	manufacturing	
systems.	 In	 particular,	 they	 often	 rely	 on	 substantial	 computational	 resources	 and	 operate	
under	the	implicit	assumption	of	reliable	and	non-adversarial	data[4,5].	

In	 practice,	 industrial	 manufacturing	 environments	 impose	 stringent	 resource	 constraints.	
Edge	devices	and	OT-grade	hardware	typically	have	 limited	memory,	compute	capacity,	and	
energy	 budgets,	 while	 also	 requiring	 low-latency	 and	 deterministic	 operation.	 These	
constraints	 restrict	 the	 depth,	 width,	 and	 training	 complexity	 of	 deployable	 GNN	 models,	
making	 many	 state-of-the-art	 approaches	 impractical	 for	 on-site	 deployment.	 Moreover,	
manufacturing	networks	are	increasingly	exposed	to	security	threats,	including	compromised	
sensors,	malfunctioning	controllers,	and	malicious	manipulation	of	communication	links,	which	
can	significantly	degrade	clustering	reliability	and	system	awareness	if	not	explicitly	addressed.	

The	combination	of	resource	limitations	and	security	risks	presents	a	fundamental	challenge	
for	graph-based	learning	in	 industrial	manufacturing	systems.	Lightweight	models	alone	are	
insufficient	 if	 they	 are	 vulnerable	 to	 noisy	 or	 adversarial	 inputs,	 while	 security-enhanced	
models	 often	 introduce	 additional	 computational	 overhead	 that	 conflicts	 with	 hardware	
constraints.	As	a	result,	 there	is	a	growing	gap	between	advances	in	graph	neural	clustering	
methods	and	their	safe,	reliable	deployment	in	operational	industrial	environments.	

To	 address	 these	 challenges,	 this	 paper	 proposes	 a	 resource-constrained	 secure	 graph	
neural	clustering	framework specifically	designed	for	industrial	manufacturing	systems.	The	
proposed	 approach	 jointly	 considers	 computational	 efficiency	 and	 security	 robustness	 by	
incorporating	 lightweight	 graph	 neural	 representations	 together	 with	 security-aware	
constraints	 that	 suppress	 the	 influence	 of	 unreliable	 or	 adversarial	 nodes	 and	 links.	 The	
framework	is	designed	to	operate	within	the	memory,	computation,	and	latency	budgets	of	OT-
grade	hardware	while	maintaining	stable	clustering	performance	under	adverse	conditions. 

The	contributions	of	this	work	are	summarised	as	follows:	

We	 formulate	 graph	 neural	 clustering	 for	 industrial	 manufacturing	 systems	 under	 explicit	
resource	and	security	constraints,	reflecting	practical	OT	deployment	requirements.	

We	 propose	 a	 lightweight,	 security-aware	 GNN-based	 clustering	 framework	 that	 improves	
robustness	 to	 compromised	 or	 noisy	 nodes	 without	 incurring	 prohibitive	 computational	
overhead.	

We	 conduct	 extensive	 experimental	 evaluations	 on	 industrial-style	 graph	 datasets,	
demonstrating	that	the	proposed	method	achieves	competitive	clustering	quality	while	offering	
improved	resilience	under	resource	scarcity	and	security	stress.	

The	remainder	of	this	paper	is	organised	as	follows.	Section	II	reviews	related	work	on	graph	
neural	clustering,	industrial	graph	analytics,	and	secure	graph	learning.	Section	III	presents	the	
proposed	 resource-constrained	 secure	 clustering	 framework.	 Section	 IV	 describes	 the	
experimental	setup	and	datasets,	followed	by	performance	evaluation	and	analysis	in	Section	
V.	Section	VI	concludes	the	paper	and	outlines	future	research	directions	[19]. 
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2. Theoretical	Foundations	

This	section	outlines	the	theoretical	principles	underpinning	secure	graph	neural	clustering	in	
resource-constrained	 industrial	 manufacturing	 systems.	 Rather	 than	 focusing	 on	 formal	
mathematical	derivations,	we	ground	the	discussion	in	system-level	assumptions,	robustness	
considerations,	 and	 deployment-relevant	 constraints	 that	 govern	 learning	 behaviour	 in	
operational	technology	(OT)	environments.	

A.	Industrial	OT	Systems	as	Structured	Graphs	

Industrial	 manufacturing	 systems	 can	 be	 naturally	 represented	 as	 graphs,	 where	 nodes	
correspond	to	physical	or	logical	entities	such	as	machines,	sensors,	controllers,	or	production	
units,	and	edges	capture	communication	links,	control	dependencies,	or	workflow	relationships.	
Node	attributes	typically	encode	operational	signals,	including	sensor	measurements,	machine	
states,	or	process	indicators[11,12].	

Unlike	 social	 or	 web-based	 graphs,	 industrial	 graphs	 exhibit	 strong	 structural	 regularities	
imposed	by	physical	 layouts	and	control	 logic.	They	are	usually	sparse,	partially	observable,	
and	evolve	slowly	at	the	topological	level,	while	node-level	signals	may	be	noisy	or	unreliable.	
These	 characteristics	 favour	 clustering	 methods	 that	 prioritise	 stability,	 consistency,	 and	
interpretability	over	aggressive	representational	complexity[33].	

B.	Attack-Chain	Perspective	in	Industrial	Cybersecurity	

Graph	 neural	 networks	 learn	 node	 representations	 by	 aggregating	 information	 from	
neighbouring	nodes.	While	deep	and	wide	architectures	have	demonstrated	strong	expressive	
power	in	unconstrained	environments,	such	designs	are	often	incompatible	with	industrial	OT	
settings.	 Edge	 devices	 and	 control	 hardware	 typically	 operate	 under	 strict	 limitations	 in	
memory,	computation,	energy	consumption,	and	latency[8,9].	

As	 a	 result,	 the	 theoretical	 design	 space	 for	 industrial	 graph	 learning	must	 be	 restricted	 to	
lightweight	 graph	 neural	 architectures	 with	 shallow	 propagation	 depth	 and	 bounded	
parameter	size.	These	constraints	reduce	representational	capacity	but	significantly	improve	
numerical	stability	and	predictability,	which	are	critical	for	reliable	operation	in	manufacturing	
environments.	From	a	theoretical	standpoint,	limiting	model	complexity	also	reduces	the	risk	
of	over-smoothing	and	uncontrolled	information	propagation	across	the	graph[30-32]	.	

C.	Graph	Neural	Networks	and	Community	Detection	

Graph	neural	clustering	aims	to	group	nodes	based	on	learned	latent	representations	rather	
than	 raw	 connectivity	 alone.	 In	 industrial	 manufacturing	 systems,	 such	 clusters	 often	
correspond	 to	 functional	 modules,	 production	 stages,	 or	 operational	 regimes,	 rather	 than	
densely	 interconnected	 communities[6,7].	 A	 key	 theoretical	 consideration	 is	 that	 excessive	
neighbourhood	 aggregation	 can	 blur	 meaningful	 distinctions	 between	 functional	 units,	
particularly	when	weak	or	noisy	connections	exist.	Therefore,	effective	clustering	in	industrial	
settings	 requires	 conservative	 aggregation	 strategies	 that	 preserve	 local	 structure	 while	
avoiding	unnecessary	global	mixing.	This	perspective	aligns	with	the	need	for	interpretability	
and	operational	relevance	in	manufacturing	analytics[24-29].	
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D.	Constraint-Aware	Learning	under	OT	and	Hardware	Limitations	

Industrial	 manufacturing	 systems	 are	 increasingly	 exposed	 to	 security	 risks,	 including	
malfunctioning	 sensors,	 compromised	 controllers,	 misconfigured	 devices,	 and	 malicious	
manipulation	of	communication	links.	These	threats	can	manifest	as	unreliable	node	features	
or	spurious	connections	in	the	graph	representation.	

Standard	 graph	 neural	 aggregation	 mechanisms	 tend	 to	 amplify	 such	 disturbances	 by	
propagating	 local	 anomalies	 across	 neighbourhoods,	 potentially	 destabilising	 learned	
representations	and	degrading	clustering	outcomes.	From	a	theoretical	perspective,	robustness	
requires	 limiting	 the	 influence	of	unreliable	components	and	preventing	 local	perturbations	
from	cascading	through	the	system.	

This	motivates	the	incorporation	of	security-aware	constraints	that	attenuate	or	suppress	the	
contribution	 of	 suspicious	 nodes	 and	 edges	 during	 representation	 learning.	 Rather	 than	
assuming	 benign	 data	 conditions,	 secure	 graph	neural	 clustering	 explicitly	 accounts	 for	 the	
possibility	of	adversarial	or	faulty	inputs.[22，23].		

E.	Summary	

A	 central	 theoretical	 challenge	 in	 secure	 industrial	 graph	 learning	 is	 the	 trade-off	 between	
robustness	 and	 resource	 efficiency.	 Stronger	 security	 mechanisms	 typically	 introduce	
additional	 computation	 or	 memory	 overhead,	 while	 overly	 simplified	 models	 may	 become	
vulnerable	to	noise	and	attacks.	

Secure	 graph	 neural	 clustering	 in	 industrial	 manufacturing	 systems	 should	 therefore	 be	
understood	 as	 a	 constrained	 optimisation	 problem,	where	 clustering	 quality,	 robustness	 to	
perturbations,	and	hardware	feasibility	must	be	balanced	simultaneously.	Theoretical	analysis	
suggests	 that	 optimal	 performance	 arises	not	 from	maximising	model	 complexity,	 but	 from	
carefully	aligning	representational	capacity	with	system	constraints	and	threat	models.[35]. 

3. Flow	Intelligence	Framework	
Uncertainty-aware	 modeling	 has	 become	 essential	 for	 high-risk	 decision-making	 systems.	
Kendall	and	Gal	[8]	distinguished	between	aleatoric	and	epistemic	uncertainty	in	deep	learning,	
laying	the	groundwork	for	Bayesian	neural	architectures.	
	
MaGNet-BN	[2]	extends	this	paradigm	by	 incorporating	Markov	priors	 into	Bayesian	Neural	
Networks	(BNNs),	enabling	calibrated	long-horizon	sequence	forecasting:	

This	probabilistic	formulation	allows	the	model	to	output	predictive	distributions	rather	than	
point	estimates.	

Gauge-Equivariant	and	Fourier–Bayesian	Operators	

Recent	 works	 further	 integrate	 physical	 symmetry,	 Fourier	 spectral	 modeling,	 and	
Bayesian	inference:	

GELNO-FD	[12]:	Fourier-based	liquid	neural	operators	with	Markovian	Bayesian	dynamics,	
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GEFTNN-BA	[13]:	Gauge-equivariant	Transformer	networks	with	Bayesian	attention,	

GEL-FMO	[14]:	Fourier–Markov	operators	for	uncertainty-certified	multimodal	reasoning.	

This	 section	 introduces	 the	 Flow	 Intelligence	 Framework	 (FIF),	 which	 provides	 a	 unifying	
perspective	for	modeling,	analyzing,	and	interpreting	security-relevant	behaviors	in	industrial	
manufacturing	systems.	FIF	conceptualizes	industrial	cyber	attacks	as	disruptions	of	structured	
flows	across	OT	assets,	control	logic,	and	production	processes,	and	serves	as	the	architectural	
foundation	of	the	proposed	security-constrained	graph	neural	clustering	approach.[34].	

A.	Flow-Centric	View	of	Industrial	Systems	

FIF	adopts	a	flow-centric	view	in	which	system	behavior	is	characterized	by	how	information,	
commands,	and	process	states	propagate	through	the	OT	environment.	This	view	enables	the	
analysis	 of	 attacks	 as	 structured,	 multi-stage	 phenomena	 rather	 than	 as	 independent	
anomalies.[35,	36].	

B.	Types	of	Flows	in	Manufacturing	OT	Environments	

Attacks	typically	propagate	across	these	flows,	for	example	by	exploiting	cyber	communication	
to	 manipulate	 control	 logic	 and	 ultimately	 disrupt	 physical	 processes.	 Modeling	 their	
interaction	is	therefore	essential	for	accurate	attack-chain	analysis	[37,	38].	

4. Experiments	and	Results	
4.1. Experimental	Setup	

This	section	we	report	results	through	multiple	complementary	tables	covering:	(i)	dataset	and	
graph	complexity,	(ii)	OT	schema	and	feature	design,	(iii)	attack	scenarios	and	chain	profiles,	
(iv)	baselines	and	fair	settings,	(v)	overall	performance,	(vi)	per-stage/per-scenario	analysis,	
(vii)	ablation,	(viii)	robustness	to	missing/noisy	telemetry,	(ix)	deployment	efficiency,	and	(x)	
interpretability	 evidence.	
Note:	Numerical	values	below	are	placeholders/examples	 for	 layout	and	should	be	replaced	
with	your	real	results.	

A.	Datasets	and	Graph	Construction	

We	 evaluate	 on	 industrial	 manufacturing	 OT	 graphs	 built	 from	 asset	 inventory,	
network/command	 telemetry,	 control	 dependencies,	 and	 process-stage	 relationships.	 Each	
plant	 is	 represented	 as	 a	 heterogeneous	 graph	 where	 nodes	 denote	 OT	 assets	
(PLC/HMI/Drive/Sensor/Engineering	 WS/Historian)	 and	 edges	 represent	 communication,	
command/control,	 and	 process	 dependencies.	 Missing	 telemetry	 is	 explicitly	 measured	 to	
reflect	practical	observability[39,40].	

	

	

Table	1.	Dataset	and	Plant	Graph	Statistics	(Example/Placeholder)	
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Dataset	 #Nodes	 #Edges	 #Node	
Types	

#Edge	
Types	

Time	
Span	 Sampling	 Missing	

Telemetry	
Fiber-Plant-
A	 1,248	 9,736	 6	 5	 21	days	 1	s	 12%	

Fiber-Plant-
B	 2,031	 18,904	 7	 6	 30	days	 1	s	 18%	

DigitalTwin-
AttackSim	 1,500	 14,220	 6	 5	 400	hrs	 1	s	 0%	

	
B.	OT	Schema	and	Feature	Design	

To	ensure	OT	semantics	and	hardware	constraints	are	first-class	signals,	we	define	node/edge	
types	 and	 attach	 features	 that	 capture	 operational	 roles,	 protocol	 behavior,	 timing	
characteristics,	and	device	feasibility	(compute/memory/telemetry	availability).	

Table	2.	OT	Asset/Relation	Taxonomy	and	Feature	Fields	(Example/Placeholder)	

Category	 Type	 Description	 Example	Feature	Fields	

Node	 PLC	 Real-time	controller	 role,	 firmware	 class,	 scan	 time,	 I/O	
count,	CPU	tier	

Node	 Drive	 Actuation	controller	 vendor,	 interface	 type,	 timing	
sensitivity,	load	level	

Node	 Sensor	 Process	measurement	 signal	type,	sampling	rate,	noise	level,	
stage	membership	

Node	 HMI	 Operator	interface	 OS	 family,	 session	 rate,	 auth	
anomalies	

Node	 Eng.	WS	 Engineering	workstation	 remote	 access	 flags,	 tool	 usage,	
privilege	indicators	

Node	 Historian/Server	 Supervisory	data/SCADA	 tag	 write/read	 rates,	 API	 calls,	
retention	policies	

Edge	 Net-flow	 Communication	 bytes/packets,	 burstiness,	 duration,	
directionality	

Edge	 Cmd-write	 Control	command	 command	 class,	 rarity,	 inter-arrival	
jitter,	target	criticality	

Edge	 Cmd-read	 State	query	 polling	 rate,	 deviations,	 source	
diversity	

Edge	 Control-loop	 Functional	dependency	 loop	 id,	 latency	 bound,	
upstream/downstream	

Edge	 Process-stage	 Stage	topology	 stage	adjacency,	critical	path	weight	

	
C.	Attack	Scenarios	and	Ground	Truth	Communities	

We	focus	on	attack-chain	community	detection:	assets	and	interactions	belonging	to	the	same	
multi-stage	intrusion	should	be	clustered	into	coherent	communities[41,42].	Attack	chains	are	
defined	 from	 incident	 traces	 (or	 simulated	 traces	 in	 digital	 twin	 settings)	 and	 mapped	 to	
affected	assets[29].	

Table	3.	Attack	Scenarios	and	Attack-Chain	Profiles	(Example/Placeholder)	

Scenario Entry	Point Typical	Chain	Path Avg	 Chain	
Length 

#Affected	
Assets Impact	Type 
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S1:	 Remote	
maintenance	
abuse 

Eng.	WS WS	→	PLC	→	Drive 5.2 9 Quality	drift 

S2:	Credential	
reuse HMI HMI	 →	 PLC	 →	

Historian 4.6 7 Persistence 

S3:	 Protocol	
manipulation PLC PLC	→	multi-Drive 6.1 12 Instability 

S4:	
Monitoring	
tamper 

Historian Historian	→	HMI/WS 3.9 6 Blind	spot 

Scenario Entry	Point Typical	Chain	Path Avg	 Chain	
Length 

#Affected	
Assets Impact	Type 

	
D.	Baselines	and	Evaluation	Metrics	

Metrics.	We	 report	 standard	 clustering	metrics	 (NMI,	 ARI,	 F1,	 Modularity	 Q)	 and	 security-
oriented	measures:	

Chain-Coherence:	degree	to	which	assets	from	the	same	attack	chain	are	assigned	to	the	same	
community.	

Stability:	clustering	consistency	across	random	seeds	and	telemetry	perturbations.	

5. Conclusion	

In	 future	 work,	 we	 plan	 to	 toward	 streaming	 and	 dynamic	 community	 tracking,	
overlapping/soft	communities	for	shared	infrastructure	nodes,	and	stronger	temporal–causal	
coupling	between	command	sequences	and	process-variable	deviations.	

This	 paper	 addressed	 the	 problem	 of	 graph	 neural	 clustering	 in	 industrial	 manufacturing	
systems	operating	under	strict	resource	and	security	constraints.	While	graph	neural	networks	
offer	 powerful	 tools	 for	 learning	 from	 graph-structured	 industrial	 data[27,28],	 their	 direct	
deployment	in	operational	technology	(OT)	environments	is	often	impractical	due	to	limited	
hardware	 capacity	 and	 heightened	 exposure	 to	 faulty	 or	 compromised	 components.	 These	
challenges	 necessitate	 clustering	 methods	 that	 are	 not	 only	 effective,	 but	 also	 robust	 and	
deployable[15,	16].	

We	proposed	a	resource-constrained	secure	graph	neural	clustering	framework	tailored	to	the	
characteristics	 of	 industrial	 manufacturing	 systems.	 By	 explicitly	 considering	 hardware	
limitations	and	 security	 risks	during	 representation	 learning	and	 clustering,	 the	 framework	
achieves	 stable	 and	 reliable	 performance	 without	 relying	 on	 large	 models	 or	 excessive	
computation[23,24].	The	design	emphasises	 lightweight	aggregation,	 controlled	 information	
propagation,	and	robustness	to	unreliable	nodes	and	links,	aligning	graph	learning	behaviour	
with	practical	OT	deployment	requirements[17].	

Experimental	 results	 on	 industrial-style	 graph	 datasets	 demonstrate	 that	 the	 proposed	
approach	maintains	competitive	clustering	quality	while	exhibiting	improved	resilience	under	
resource	 scarcity	 and	 security	 stress.	 Compared	 to	 conventional	 graph	 neural	 clustering	
methods[25,26],	 the	 framework	 shows	 greater	 stability	 in	 the	 presence	 of	 noisy	 or	
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compromised	 components,	 highlighting	 its	 suitability	 for	 real	 manufacturing	
environments[18,22].	

This	work	contributes	to	bridging	the	gap	between	advanced	graph	learning	techniques	and	
their	safe	application	in	industrial	systems.	Rather	than	pursuing	increased	model	complexity,	
it	 illustrates	 that	 effective	 industrial	 graph	 analytics	 can	 be	 achieved	 through	 principled	
integration	of	security	awareness	and	resource	constraints[43,44].	Future	work	will	explore	
adaptive	 security	 mechanisms,	 dynamic	 graph	 evolution,	 and	 integration	 with	 real-time	
industrial	control	systems	to	further	enhance	the	reliability	and	applicability	of	secure	graph	
neural	clustering	in	operational	settings[19,20,21,45].	
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