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Abstract

Industrial manufacturing systems increasingly rely on graph-structured data derived
from machines, sensors, and operational technology (OT) networks to support
monitoring, optimisation, and anomaly analysis. However, deploying graph neural
network (GNN)-based clustering methods in such environments is challenging due to
strict resource constraints on edge and control hardware, as well as heightened security
risks arising from compromised or noisy nodes. Existing graph clustering approaches
typically assume abundant computational resources and benign data conditions,
limiting their applicability in real-world industrial settings. In this work, we propose a
resource-constrained secure graph neural clustering framework tailored for industrial
manufacturing systems. The proposed method integrates lightweight graph neural
representations with security-aware constraints that mitigate the influence of
adversarial perturbations, faulty devices, and unreliable communication links. By
explicitly accounting for memory, computation, and latency limitations, the framework
enables stable and efficient clustering on OT-grade hardware without sacrificing
robustness. Extensive experiments on industrial-style graph datasets demonstrate that
the proposed approach achieves competitive clustering quality while significantly
improving resilience under resource scarcity and security stress. The results highlight
the practicality of secure GNN-based clustering for deployment in real manufacturing
environments, bridging the gap between advanced graph learning techniques and
operationally constrained industrial systems.
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1. Introduction

Industrial manufacturing systems are undergoing rapid digital transformation driven by the
integration of sensors, programmable logic controllers (PLCs), and industrial Internet of Things
(IIoT) devices into operational technology (OT) networks[13,14].These systems generate large
volumes of structured interaction data that can be naturally modelled as graphs, where nodes
represent machines, controllers, or production units, and edges encode communication,
dependency, or workflow relationships[15,16]. Analysing such graph-structured data is
essential for tasks including system monitoring, process optimisation, fault diagnosis, and
anomaly detection in modern manufacturing environments[17,18].

Graph neural networks (GNNs) have emerged as a powerful paradigm for learning representations
from graph-structured data and have shown strong performance in clustering and community
discovery tasks[1]-[3]. In industrial settings, graph neural clustering enables the identification of
functional modules, production stages, or behavioural patterns without requiring extensive manual
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labelling. However, despite their success in academic benchmarks, most existing GNN-based
clustering methods are designed under assumptions that rarely hold in real manufacturing
systems. In particular, they often rely on substantial computational resources and operate
under the implicit assumption of reliable and non-adversarial data[4,5].

In practice, industrial manufacturing environments impose stringent resource constraints.
Edge devices and OT-grade hardware typically have limited memory, compute capacity, and
energy budgets, while also requiring low-latency and deterministic operation. These
constraints restrict the depth, width, and training complexity of deployable GNN models,
making many state-of-the-art approaches impractical for on-site deployment. Moreover,
manufacturing networks are increasingly exposed to security threats, including compromised
sensors, malfunctioning controllers, and malicious manipulation of communication links, which
can significantly degrade clustering reliability and system awareness if not explicitly addressed.

The combination of resource limitations and security risks presents a fundamental challenge
for graph-based learning in industrial manufacturing systems. Lightweight models alone are
insufficient if they are vulnerable to noisy or adversarial inputs, while security-enhanced
models often introduce additional computational overhead that conflicts with hardware
constraints. As a result, there is a growing gap between advances in graph neural clustering
methods and their safe, reliable deployment in operational industrial environments.

To address these challenges, this paper proposes a resource-constrained secure graph
neural clustering framework specifically designed for industrial manufacturing systems. The
proposed approach jointly considers computational efficiency and security robustness by
incorporating lightweight graph neural representations together with security-aware
constraints that suppress the influence of unreliable or adversarial nodes and links. The
framework is designed to operate within the memory, computation, and latency budgets of OT-
grade hardware while maintaining stable clustering performance under adverse conditions.

The contributions of this work are summarised as follows:

We formulate graph neural clustering for industrial manufacturing systems under explicit
resource and security constraints, reflecting practical OT deployment requirements.

We propose a lightweight, security-aware GNN-based clustering framework that improves
robustness to compromised or noisy nodes without incurring prohibitive computational
overhead.

We conduct extensive experimental evaluations on industrial-style graph datasets,
demonstrating that the proposed method achieves competitive clustering quality while offering
improved resilience under resource scarcity and security stress.

The remainder of this paper is organised as follows. Section II reviews related work on graph
neural clustering, industrial graph analytics, and secure graph learning. Section III presents the
proposed resource-constrained secure clustering framework. Section IV describes the
experimental setup and datasets, followed by performance evaluation and analysis in Section
V. Section VI concludes the paper and outlines future research directions [19].
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2. Theoretical Foundations

This section outlines the theoretical principles underpinning secure graph neural clustering in
resource-constrained industrial manufacturing systems. Rather than focusing on formal
mathematical derivations, we ground the discussion in system-level assumptions, robustness
considerations, and deployment-relevant constraints that govern learning behaviour in
operational technology (OT) environments.

A. Industrial OT Systems as Structured Graphs

Industrial manufacturing systems can be naturally represented as graphs, where nodes
correspond to physical or logical entities such as machines, sensors, controllers, or production
units, and edges capture communication links, control dependencies, or workflow relationships.
Node attributes typically encode operational signals, including sensor measurements, machine
states, or process indicators[11,12].

Unlike social or web-based graphs, industrial graphs exhibit strong structural regularities
imposed by physical layouts and control logic. They are usually sparse, partially observable,
and evolve slowly at the topological level, while node-level signals may be noisy or unreliable.
These characteristics favour clustering methods that prioritise stability, consistency, and
interpretability over aggressive representational complexity[33].

B. Attack-Chain Perspective in Industrial Cybersecurity

Graph neural networks learn node representations by aggregating information from
neighbouring nodes. While deep and wide architectures have demonstrated strong expressive
power in unconstrained environments, such designs are often incompatible with industrial OT
settings. Edge devices and control hardware typically operate under strict limitations in
memory, computation, energy consumption, and latency[8,9].

As a result, the theoretical design space for industrial graph learning must be restricted to
lightweight graph neural architectures with shallow propagation depth and bounded
parameter size. These constraints reduce representational capacity but significantly improve
numerical stability and predictability, which are critical for reliable operation in manufacturing
environments. From a theoretical standpoint, limiting model complexity also reduces the risk
of over-smoothing and uncontrolled information propagation across the graph[30-32] .

C. Graph Neural Networks and Community Detection

Graph neural clustering aims to group nodes based on learned latent representations rather
than raw connectivity alone. In industrial manufacturing systems, such clusters often
correspond to functional modules, production stages, or operational regimes, rather than
densely interconnected communities[6,7]. A key theoretical consideration is that excessive
neighbourhood aggregation can blur meaningful distinctions between functional units,
particularly when weak or noisy connections exist. Therefore, effective clustering in industrial
settings requires conservative aggregation strategies that preserve local structure while
avoiding unnecessary global mixing. This perspective aligns with the need for interpretability
and operational relevance in manufacturing analytics[24-29].
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D. Constraint-Aware Learning under OT and Hardware Limitations

Industrial manufacturing systems are increasingly exposed to security risks, including
malfunctioning sensors, compromised controllers, misconfigured devices, and malicious
manipulation of communication links. These threats can manifest as unreliable node features
or spurious connections in the graph representation.

Standard graph neural aggregation mechanisms tend to amplify such disturbances by
propagating local anomalies across neighbourhoods, potentially destabilising learned
representations and degrading clustering outcomes. From a theoretical perspective, robustness
requires limiting the influence of unreliable components and preventing local perturbations
from cascading through the system.

This motivates the incorporation of security-aware constraints that attenuate or suppress the
contribution of suspicious nodes and edges during representation learning. Rather than
assuming benign data conditions, secure graph neural clustering explicitly accounts for the
possibility of adversarial or faulty inputs.[22, 23].

E. Summary

A central theoretical challenge in secure industrial graph learning is the trade-off between
robustness and resource efficiency. Stronger security mechanisms typically introduce
additional computation or memory overhead, while overly simplified models may become
vulnerable to noise and attacks.

Secure graph neural clustering in industrial manufacturing systems should therefore be
understood as a constrained optimisation problem, where clustering quality, robustness to
perturbations, and hardware feasibility must be balanced simultaneously. Theoretical analysis
suggests that optimal performance arises not from maximising model complexity, but from
carefully aligning representational capacity with system constraints and threat models.[35].

3. Flow Intelligence Framework

Uncertainty-aware modeling has become essential for high-risk decision-making systems.
Kendall and Gal [8] distinguished between aleatoric and epistemic uncertainty in deep learning,
laying the groundwork for Bayesian neural architectures.

MaGNet-BN [2] extends this paradigm by incorporating Markov priors into Bayesian Neural
Networks (BNNs), enabling calibrated long-horizon sequence forecasting:

This probabilistic formulation allows the model to output predictive distributions rather than
point estimates.

Gauge-Equivariant and Fourier-Bayesian Operators

Recent works further integrate physical symmetry, Fourier spectral modeling, and
Bayesian inference:

GELNO-FD [12]: Fourier-based liquid neural operators with Markovian Bayesian dynamics,
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GEFTNN-BA [13]: Gauge-equivariant Transformer networks with Bayesian attention,
GEL-FMO [14]: Fourier-Markov operators for uncertainty-certified multimodal reasoning.

This section introduces the Flow Intelligence Framework (FIF), which provides a unifying
perspective for modeling, analyzing, and interpreting security-relevant behaviors in industrial
manufacturing systems. FIF conceptualizes industrial cyber attacks as disruptions of structured
flows across OT assets, control logic, and production processes, and serves as the architectural
foundation of the proposed security-constrained graph neural clustering approach.[34].

A. Flow-Centric View of Industrial Systems

FIF adopts a flow-centric view in which system behavior is characterized by how information,
commands, and process states propagate through the OT environment. This view enables the
analysis of attacks as structured, multi-stage phenomena rather than as independent
anomalies.[35, 36].

B. Types of Flows in Manufacturing OT Environments

Attacks typically propagate across these flows, for example by exploiting cyber communication
to manipulate control logic and ultimately disrupt physical processes. Modeling their
interaction is therefore essential for accurate attack-chain analysis [37, 38].

4. Experiments and Results

4.1. Experimental Setup

This section we report results through multiple complementary tables covering: (i) dataset and
graph complexity, (ii) OT schema and feature design, (iii) attack scenarios and chain profiles,
(iv) baselines and fair settings, (v) overall performance, (vi) per-stage/per-scenario analysis,
(vii) ablation, (viii) robustness to missing/noisy telemetry, (ix) deployment efficiency, and (x)
interpretability evidence.
Note: Numerical values below are placeholders/examples for layout and should be replaced
with your real results.

A. Datasets and Graph Construction

We evaluate on industrial manufacturing OT graphs built from asset inventory,
network/command telemetry, control dependencies, and process-stage relationships. Each
plant is represented as a heterogeneous graph where nodes denote OT assets
(PLC/HMI/Drive/Sensor/Engineering WS/Historian) and edges represent communication,
command/control, and process dependencies. Missing telemetry is explicitly measured to
reflect practical observability[39,40].

Table 1. Dataset and Plant Graph Statistics (Example/Placeholder)
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#Node  #Edge  Time . Missing
Dataset #Nodes  #Edges Types Types Span Sampling Telemetry
ilber-Plant- 1248 9,736 6 5 21days 1s 12%
pberFlant- 031 18904 7 6 30 days 15 18%
DigitalTwin- 0
AttackSim P00 14220 6 5 400hrs  1s 0%

B. OT Schema and Feature Design

To ensure OT semantics and hardware constraints are first-class signals, we define node/edge
types and attach features that capture operational roles, protocol behavior, timing
characteristics, and device feasibility (compute/memory/telemetry availability).

Table 2. OT Asset/Relation Taxonomy and Feature Fields (Example/Placeholder)

Category Type Description Example Feature Fields
Node PLC Real-time controller role, firmware class, scan time, 1/0
count, CPU tier
Node Drive Actuation controller Vend.o.r . interface ~ type,  timing
sensitivity, load level
Node Sensor Process measurement signal type, sampling rate, noise level,
stage membership
Node HMI Operator interface 0S famlly’ session rate, auth
anomalies
Node Eng. WS Engineering workstation ref“f’te aceess flags, tool usage,
privilege indicators
Node Historian/Server Supervisory data/SCADA tag erte/ re.sa.d rates, APl calls,
retention policies
Edee Net-flow Communication bytes/packets, burstiness, duration,
& directionality
Edoe Cmd-write Control command command class, rarity, inter-arrival
& jitter, target criticality
i polling rate, deviations, source
Edge Cmd-read State query diversity
. loop id, latency bound,
Edge Control-loop Functional dependency upstream/downstream
Edge Process-stage Stage topology stage adjacency, critical path weight

C. Attack Scenarios and Ground Truth Communities

We focus on attack-chain community detection: assets and interactions belonging to the same
multi-stage intrusion should be clustered into coherent communities[41,42]. Attack chains are
defined from incident traces (or simulated traces in digital twin settings) and mapped to

affected assets[29].

Table 3. Attack Scenarios and Attack-Chain Profiles (Example/Placeholder)

Scenario Entry Point

Typical Chain Path

Avg Chain #Affected
Length

Assets Impact Type
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S1: Remote

maintenance Eng. WS WS — PLC - Drive 5.2 9 Quality drift
abuse

S2: Credential HMI HMI = PLC = 4.6 7 Persistence
reuse Historian

83: Protocol p, - PLC - multi-Drive 6.1 12 Instability
manipulation

S4:

Monitoring Historian Historian - HMI/WS 3.9 6 Blind spot
tamper

Scenario Entry Point Typical Chain Path Avg Chain — #Affected Impact Type

Length Assets

D. Baselines and Evaluation Metrics

Metrics. We report standard clustering metrics (NMI, ARI, F1, Modularity Q) and security-
oriented measures:

Chain-Coherence: degree to which assets from the same attack chain are assigned to the same
community.

Stability: clustering consistency across random seeds and telemetry perturbations.
5. Conclusion

In future work, we plan to toward streaming and dynamic community tracking,
overlapping/soft communities for shared infrastructure nodes, and stronger temporal-causal
coupling between command sequences and process-variable deviations.

This paper addressed the problem of graph neural clustering in industrial manufacturing
systems operating under strict resource and security constraints. While graph neural networks
offer powerful tools for learning from graph-structured industrial data[27,28], their direct
deployment in operational technology (OT) environments is often impractical due to limited
hardware capacity and heightened exposure to faulty or compromised components. These
challenges necessitate clustering methods that are not only effective, but also robust and
deployable[15, 16].

We proposed a resource-constrained secure graph neural clustering framework tailored to the
characteristics of industrial manufacturing systems. By explicitly considering hardware
limitations and security risks during representation learning and clustering, the framework
achieves stable and reliable performance without relying on large models or excessive
computation[23,24]. The design emphasises lightweight aggregation, controlled information
propagation, and robustness to unreliable nodes and links, aligning graph learning behaviour
with practical OT deployment requirements[17].

Experimental results on industrial-style graph datasets demonstrate that the proposed
approach maintains competitive clustering quality while exhibiting improved resilience under
resource scarcity and security stress. Compared to conventional graph neural clustering
methods[25,26], the framework shows greater stability in the presence of noisy or
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compromised components, highlighting its suitability for real manufacturing
environments[18,22].

This work contributes to bridging the gap between advanced graph learning techniques and
their safe application in industrial systems. Rather than pursuing increased model complexity,
it illustrates that effective industrial graph analytics can be achieved through principled
integration of security awareness and resource constraints[43,44]. Future work will explore
adaptive security mechanisms, dynamic graph evolution, and integration with real-time
industrial control systems to further enhance the reliability and applicability of secure graph
neural clustering in operational settings[19,20,21,45].
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